ebook img

Geometric algebra: An algebraic system for computer games and animation PDF

204 Pages·2009·1.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Geometric algebra: An algebraic system for computer games and animation

Geometric Algebra: An Algebraic System for Computer Games and Animation John Vince Geometric Algebra: An Algebraic System for Computer Games and Animation Prof.JohnVince,MTech,PhD,DSc,CEng,FBCS www.johnvince.co.uk ISBN978-1-84882-378-5 e-ISBN978-1-84882-379-2 DOI10.1007/978-1-84882-379-2 SpringerDordrechtHeidelbergLondonNewYork BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressControlNumber:2009926270 (cid:2)c Springer-VerlagLondonLimited2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permittedundertheCopyright,DesignsandPatentsAct1988,thispublicationmayonlybereproduced, storedortransmitted,inanyformorbyanymeans,withthepriorpermissioninwritingofthepublishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the CopyrightLicensingAgency.Enquiriesconcerningreproductionoutsidethosetermsshouldbesentto thepublishers. Theuseofregisterednames,trademarks,etc.,inthispublicationdoesnotimply,evenintheabsenceofa specificstatement,thatsuchnamesareexemptfromtherelevantlawsandregulationsandthereforefree forgeneraluse. Thepublishermakesnorepresentation,expressorimplied,withregardtotheaccuracyoftheinformation containedinthisbookandcannotacceptanylegalresponsibilityorliabilityforanyerrorsoromissions thatmaybemade. Coverdesign BoekhorstDesignBV Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Thisbookisaffectionatelydedicatedtomyfamily:Annie,Samantha,Anthony,Genny,Peter,Megan, Mia,LucieandmydogMonty. Preface Inmyfirstbookongeometricalgebrain2007theprefacedescribedhowIhadbeencompletely surprisedbytheexistenceofgeometricalgebra,especiallyafterhavingrecentlycompletedabook onvectoranalysiswhereitwasnotevenmentioned!SowhyamIwritingasecondbookonthe samesubject?Wellit’snotbecauseIhavenothingbettertodowithmytime.Therearemanymore booksIhavetowritebeforegoingtothegreatlibraryinthesky! WhenIstarted writing GeometricAlgebraforComputerGraphics Iknewverylittleaboutthe subjectand hadtounderstand theconceptsasIwentalong—which wasextremelydifficult.In retrospect,theyearspentwritingthatbookwaslikeclimbingamountain,andaftercompleting the chapter on conformal geometry I had effectively reached the summit and, in terms of my understanding,theviewwascompelling.ButhavingreachedthesummitIthenhadtoracedown withmymanuscriptandsendittoSpringer. Inthefollowingweeksitwasdifficulttoforgetthepreviousyear’sjourney.HadIreallyunder- stoodgeometricalgebra?HadIreallylaidoutthesubjectinawaythatanyonecouldunderstand? Such questions bothered me on a daily basis, especially when walking my dog Monty. Such momentsgavemethetimetoreflectuponwhatwasreallybehindthealgebraandwhathadgone onbetweenHamilton,GrassmannandGibbswhenthefoundationsofvectoranalysiswerebeing establishedahundredandfiftyyearsago. BackinmyofficeIstartedtoexplorevectorproductsfromasymbolicstandpointandrealized that if two vectors are expanded algebraically,four terms result from two 2D vectors and nine termsfromtwo3Dvectors.Nothingnew,orearthshattering.However,ifthesetermsaredivided intotwosets,theygiverisetotheinnerandouterproducts: ab=a·b+a∧b whichisClifford’soriginalgeometricproduct. I also found that when such products are expanded in tabular form, and colour is used to highlighttheinnerandouterproductterms,thedifferencebetweenthetwosetsbecamestrikingly obvious.IimmediatelyaskedSpringerforpermissiontousecolourthroughoutanewbookon geometricalgebra,whichwouldhopefullywouldopenupthesubjecttoawideraudience. vii viii Preface Icontinuedtoapplythesamealgebraictreatmenttovectors,bivectorsandtrivectorsandthen discovered that I had been using something called dyads, which had been employed by Gibbs in his work on vectors. Far from being disappointed,I continued in the knowledge that I was probablyontherighttrack. Thebook’sstructureemergedwithouttoomucheffort:Thefirstchapter,whichwasthelastto bewritten,brieflyexplorestheimportantrolethataxiomsplayinmathematicsandhowwehave struggledduringpreviouscenturiestoacceptnon-sensicalideassuchasintersectingparallellines, infinitesetsandimaginarynumbers.Thisistopreparethereaderforideassuchasmultiplyinga linebyanarea,squaringanarea,oraddingscalars,lines,areasandvolumestocreateamultivector. ItremindsmeofthetimeIwrotesomecodetoaddtheshapesofanelephantandseahorsetogether, ordivideacirclebyatriangle.Totallynon-sensical,butveryuseful! The second chapter reviews the productsof real algebra,complexnumbers and quaternions usingthesametablesemployedlaterforgeometricalgebra. Thethirdchapterisonvectorproductsandreviewsthetraditionalscalarandvectorproducts intabularform.Dyadicsarethenintroducedandleadontoadescriptionoftheouterproductin 2Dand3D. Chapterfour introduces the geometric product as the sum of the inner and outerproducts. Bladesaredefinedandthechapterconcludesbyexploringthegeometricproductofvarioustypes ofvectors. Having laid the foundations for geometric algebra in the first four chapters, chapter five describes features such as grades,pseudoscalars,multivectors,reversion,inversion,duality and theimaginaryandrotationalpropertiesofbivectors. Next,chaptersixcoversallthepossibleproductsbetweenvectorsandbivectorsin2D.Similarly, chapter seven covers all the possible products between vectors, bivectors and trivectors in 3D. Tablesandcolourplayanimportantroleinrevealingthenaturalpatternsthatresultfromthese products. Chaptereightshowshowpowerfulgeometricalgebraiswhenhandlingreflectionsandrotations, andatthispointwediscoverthatquaternionsareanaturalfeatureofgeometricalgebra. Chapternineexploresawiderangegeometricproblemsencounteredincomputergamesand computer animation problems. It is far from exhaustive, but provides strategies that can be employedinallsortsofsimilarproblems. Finally,chaptertendrawsthebooktoaconclusion. Having written these ten chapters I hope that I have finally found a straightforward way of describing geometric algebra that will enable it to be used by anyone working in computer graphics. Ishouldsaysomethingaboutthenotationemployedinthebook.Vectorsarenormallyshown inaboldtypeface,todistinguishthemfromscalarquantities.Butasvirtuallyeveryequationrefer- encesvectors,IhavefollowedChrisDoranandAnthonyLasenby’sleadandleftthemuntouched. Thereisnoconfusionbetweenvectorsandscalars,asyouwilldiscover. IwouldliketoacknowledgethatIcouldnothavewrittenthisbookwithouttheexistenceof GeometricAlgebraforPhysicistswrittenbyChrisDoranandAnthonyLasenby.Itprovidesthemost lucidintroductiontogeometricalgebra.Similarly,MichaelCrowe’sAHistoryofVectorAnalysisis thebestbookonthesubject. Preface ix Once again, I am indebted to Beverley Ford, General Manager, Springer UK, and Helen Desmond, Assistant Editor for Computer Science, for their continual support throughout the developmentofthismanuscript. Idohopeyouenjoyreadinganddiscoveringsomethingnewfromthisbook. Ringwood JohnVince Contents Preface.............................................................................. vii Symbolsandnotation .............................................................. xvii 1 Introduction..................................................................... 1 1.1 Senseandnonsense.................................................................... 1 1.2 Geometricalgebra...................................................................... 2 2 Products......................................................................... 5 2.1 Introduction ............................................................................. 5 2.2 Realproducts............................................................................ 5 2.3 Complexproducts ...................................................................... 7 2.4 Quaternionproducts ................................................................... 8 2.5 Summary ................................................................................ 11 3 VectorProducts ................................................................. 13 3.1 Introduction ............................................................................. 13 3.2 Thescalarproduct ...................................................................... 13 3.3 Thevectorproduct...................................................................... 14 3.4 Dyadics................................................................................... 16 3.5 Theouterproduct....................................................................... 20 3.5.1 Originsoftheouterproduct.................................................. 20 3.5.2 Thegeometricmeaningoftheouterproductin2D........................ 21 xi xii Contents 3.5.3 Thegeometricmeaningoftheouterproductin3D........................ 25 3.6 Summary ................................................................................ 32 4 TheGeometricProduct.......................................................... 33 4.1 Introduction ............................................................................. 33 4.2 Axioms ................................................................................... 33 4.3 Redefiningtheinnerandouterproducts............................................. 37 4.4 Blades .................................................................................... 41 4.5 Thegeometricproductofdifferentvectors .......................................... 42 4.5.1 Orthogonalvectors............................................................ 43 4.5.2 Parallelvectors ................................................................. 44 4.5.3 Linearlyindependentvectors................................................. 44 4.6 Summary ................................................................................ 47 5 GeometricAlgebra .............................................................. 49 5.1 Introduction ............................................................................. 49 5.2 Gradesandpseudoscalars ............................................................. 49 5.3 Multivectors ............................................................................. 50 5.4 Reversion ................................................................................ 53 5.5 Theinverseofamultivector............................................................ 54 5.6 Theimaginarypropertiesoftheouterproduct...................................... 58 5.7 Therotationalpropertiesofthe2Dunitbivector.................................... 59 5.8 Theimaginarypropertiesofthe3Dunitbivectorandthetrivector ............... 60 5.9 Duality ................................................................................... 61 5.10 Summary ................................................................................ 64 6 Productsin2D................................................................... 65 6.1 Introduction ............................................................................. 65 6.2 Thescalar-vectorproduct.............................................................. 66 6.3 Thescalar-bivectorproduct............................................................ 67 6.4 Thevector-vectorproducts ............................................................ 67 6.4.1 Theinnerproduct.............................................................. 67 6.4.2 Theouterproduct.............................................................. 69 6.4.3 Thegeometricproduct........................................................ 70 6.5 Thevector-bivectorproduct........................................................... 71

Description:
The true power of vectors has never been exploited, for over a century, mathematicians, engineers, scientists, and more recently programmers, have been using vectors to solve an extraordinary range of problems. However, today, we can discover the true potential of oriented, lines, planes and volumes
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.