ebook img

Generative Adversarial Networks - INF5860 PDF

88 Pages·2017·22.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generative Adversarial Networks - INF5860

generative adversarial networks INF5860—MachineLearningforImageAnalysis Ole-JohanSkrede 02.05.2018 UniversityofOslo Outline ∙ Repetition ∙ GenerativeAdversarialNetworks ∙ Otheradversarialmethods 1 repetition Autoencoders ∙ Anautoencoderf consistofanencoderg andandecoderh ∙ Theencodermapstheinputxtosomerepresentationz g(x)=z ∙ Weoftencallthisrepresentationz forthecodeorthelatentvector ∙ Thedecodermapsthisrepresentationz tosomeoutputx^ g(z)=x^ ∙ Wewanttotraintheencoderanddecodersuchthat f(x)=h(g(x))=x^(cid:25)x ∙ Commonlyusedforcompression,featureextractionand de-noising 3 Compression autoencoder — MNIST example (a)Original (b)Reconstructed 4 De-noising autoencoder — MNIST example (a)Original (b)Reconstructed 5 Variational autoencoders ∙ Avariationalautoencoderisdesignedtohavea continuouslatentspace ∙ Thismakesthemidealforrandomsamplingand interpolation ∙ Itachievethisbyforcingtheencoderg togenerate Gaussianrepresentations,z (cid:24)N((cid:22);(cid:27)2) ∙ Moreprecisely,foroneinput,theencodergeneratesa mean(cid:22)andavariance(cid:27)2 ∙ Wesamplethensampleazero-mean,unit-variance Gaussianz~(cid:24)N(0;1) ∙ Constructtheinputz tothedecoderfromthis z =(cid:22)+z~(cid:27)2 ∙ Withthis,z issampledfromq =N((cid:22);(cid:27)2) 6 Intuition ∙ Thisisastochasticsampling ∙ Thatis,wecansampledifferentz fromthesamesetof ((cid:22);(cid:27)2) ∙ Theintuitionisthatthedecoder“learns”thatforagiven inputx: ∙ thepointzisimportantforreconstruction ∙ butalsoaneighbourhoodofz ∙ Inthisway,wehavesmoothedthelatentspace,atleast locally ∙ Inthepreviouslecture,welearntwaystoachievethis 7 VAE example: reconstruction (a)Original (b)Reconstructed 8 VAE example: generation of new signals ∙ Samplearandomlatentvectorz fromN(0;1) ∙ Decodez 9

Description:
We often call this representation z for the code or the latent vector. ∙ The decoder A model that can sample from this pmodel is termed a generative model. ∙ For brevity, we .. done in order to transform one distribution to the other.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.