ebook img

Generative adversarial networks for single image super resolution in microscopy images PDF

120 Pages·2017·9.07 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generative adversarial networks for single image super resolution in microscopy images

DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Generative adversarial networks for single image super resolution in microscopy images SAURABH GAWANDE KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY Generative adversarial networks for single image super resolution in microscopy images SAURABH GAWANDE Master’s Thesis at KTH Information and Communication Technology Supervisor: Mihhail Matskin Examiner: Dr. Anne Hakånsson Industrial Supervisor: Dr. Kevin Smith TRITA-EECS-EX-2018:10 Abstract Image Super resolution is a widely-studied problem in computer vision, where the objective is to convert a low- resolution image to a high resolution image. Conventional methods for achieving super-resolution such as image pri- ors, interpolation, sparse coding require a lot of pre/post processingandoptimization. Recently,deeplearningmeth- ods such as convolutional neural networks and generative adversarialnetworksarebeingusedtoperformsuper-resolution with results competitive to the state of the art but none of them have been used on microscopy images. In this thesis, a generative adversarial network, mSRGAN, is proposed forsuperresolutionwithaperceptuallossfunctionconsist- ing of a adversarial loss, mean squared error and content loss. Theobjectiveofourimplementationistolearnanend to end mapping between the low / high resolution images and optimize the upscaled image for quantitative metrics as well as perceptual quality. We then compare our results with the current state of the art methods in super reso- lution, conduct a proof of concept segmentation study to show that super resolved images can be used as a effective pre processing step before segmentation and validate the findings statistically. Keywords: Deep Learning, Generative adversarial net- works,Superresolution,Highcontentscreeningmicroscopy Abstract Image Super-resolution är ett allmänt studerad problem i datasyn, där målet är att konvertera en lågupplösnings- bild till en högupplöst bild. Konventionella metoder för attuppnåsuperupplösningsomimagepriors,interpolation, sparse coding behöver mycket för- och efterbehandling och optimering.Nyligen djupa inlärningsmetoder som convolu- tional neurala nätverk och generativa adversariella nätverk är användas för att utföra superupplösning med resultat som är konkurrenskraftiga mot toppmoderna teknik, men ingen av dem har använts på mikroskopibilder. I denna avhandling, ett generativ kontradiktorisktsnätverk, mSR- GAN, är föreslås för superupplösning med en perceptuell förlustfunktion bestående av en motsatt förlust, medelk- vadratfel och innehållförlust.Mål med vår implementering ärattläraossettslutpåattslutkartläggningmellanbilder med låg / hög upplösning och optimera den uppskalade bildenförkvantitativametrikssåvälsomperceptuellkvalitet. Vi jämför sedan våra resultat med de nuvarande toppmod- ernametodernaisuperupplösning,ochuppträdandeettbe- vispåkonceptsegmenteringsstudieförattvisaattsuperlösa bilder kan användas som ett effektivt förbehandling steg före segmentering och validera fynden statistiskt. Keywords: Deep Learning, Generative adversarial net- works,Superresolution,Highcontentscreeningmicroscopy Acknowledgements First of all, I would like to express my sincerest gratitude to Dr. Kevin Smith for giving me the opportunity to work on this exciting topic and without whom this work wouldn’t have materialized. Having a guide like Kevin was truly a blessing and I could not have wished for a better mentor. Thank you, Kevin for always being patient with me, pushing me to go the extra mile and always making the time for me despite your hectic schedule. I would like to thank Dr.Hossein Azizpour for his continuous feedback and ideas, always being available to clear my doubts no matter how naive and serving as a beacon of inspiration. I am also thankful to my examiner Dr. Anne Hakånsson for providing me the support I needed to stay on track and helping me maintaining scientific quality of this work . Last but not the least, no amount of thanks will ever be enough for my parents who have loved, supported and cared for me unconditionally throughout my tumul- tuous and protracted journey. May all your minima always be local! Tack! Contents Abbreviations 1 Introduction 1 1.1 Image Super-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Purpose and Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Ethics and Sustainability . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.7 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Relevant Theory 7 2.1 Background knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Strategies to increase image resolution . . . . . . . . . . . . . 9 2.1.3 Evaluation metric for Super-Resolution . . . . . . . . . . . . 10 2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . 13 2.2.2 Generative Adversarial Networks . . . . . . . . . . . . . . . . 13 2.3 Literature Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Traditional Single Image super resolution . . . . . . . . . . . 18 2.3.2 Deep Learning based Single Image super resolution . . . . . 20 3 Motivation 24 3.1 HCS microscopy problems in image acquisition . . . . . . . . . . . . 24 3.1.1 Photo bleaching . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Bleed through/ Crosstalk . . . . . . . . . . . . . . . . . . . . 27 3.1.3 Phototoxicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.4 Uneven illumination . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.5 Color and contrast errors . . . . . . . . . . . . . . . . . . . . 30 3.2 Inefficiency of pixel wise M.S.E . . . . . . . . . . . . . . . . . . . . . 31 3.3 Feature transferability issues in CNN’s for distant source and target domians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Methods 35 4.1 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 Generative Adversarial Network architecture . . . . . . . . . . . . . 38 4.4 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4.1 Perceptual Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.4.2 Pixel wise Mean squared error . . . . . . . . . . . . . . . . . 41 4.4.3 Content Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4.4 Adversarial Loss . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4.5 Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.5 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.1 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Experiments and Results 47 5.1 mSRGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 mSRGAN - VGG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3 mSRGAN - VGG5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 SRRESNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.5 mSRGAN - CL (Only content loss) . . . . . . . . . . . . . . . . . . . 60 5.6 SRGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.7 Nuclei Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.7.1 Statistical Validation . . . . . . . . . . . . . . . . . . . . . . . 70 6 Discussion 74 6.1 mSRGAN vs SRGAN (Evaluating Hypothesis 1) . . . . . . . . . . . 74 6.2 Content loss vs M.S.E (Evaluating hypothesis 2) . . . . . . . . . . . 76 6.2.1 Effect of Different VGG layers . . . . . . . . . . . . . . . . . 77 6.2.2 PSNR variation for mSRGAN variants . . . . . . . . . . . . . 78 6.3 Segmentation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.4 GAN failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.5 Checkerboard Artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.6 Lack of training data . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7 Conclusion 93 7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Bibliography 95 Appendices 101 A More Results 101 Abbreviations α weight coefficient for M.S.E β weight coefficient for content loss CNN Convolutional neural networks CT Computed tomography DL Deep Learning GAN Generative adversarial networks GAN Generative adversarial networks HCS High content screening HR High resolution HVS Human visual system LR low resolution image MRI Magnetic resonance imaging MSE Mean Squared Error psnr Peak Signal to Noise ratio SC Sparse coding SGD Stochastic gradient descent SISR Single image super resolution SR Super Resolution Chapter 1 Introduction In this thesis project, we explore the use of Generative adversarial networks for per- forming single image super resolution on high content screening microscopy images. The project was carried out within the Bioimage Informatics Facility at the Science for Life Laboratory, Sweden. 1.1 Image Super-resolution In most digital imaging applications, high-resolution images are preferred and of- ten required to accomplish tasks. Image super-resolution (SR) is a widely-studied problem in computer vision, where the objective is to generate one or more high- resolution images from one or more low-resolution images. SR algorithm aims to produce details finer than the sampling grid of a given imaging device by increas- ing the number of pixels per unit area in an image. SR is a well known ill-posed inverseproblem,wherefromalow-resolutionimage(usuallycorruptedbynoise,mo- tionblur,aliasing,opticaldistortion,etc.) ahigh-resolutionimageisrestored[1][2]. SR techniques can be applied in many scenarios where multiple frames of a sin- gle scene can be obtained (e.g., multiple images of the same object by a single camera), various images of a scene are available from numerous sources (numerous cameras capturing a single scene from various locations). SR has its applications in varied fields such as Satellite imaging (eg. remote sens- ing) where several images of a single area are available, in security and surveillance where it may be required to enlarge a particular point of interest in a scene (such as zooming on the face of a criminal or the numbers of a license plate), in computer vision where it can improve the performance of pattern recognition and other areas such as facial image analysis, text image analysis, biometric identification, finger- print image enhancement, etc. [1]. SR is particularly of great importance in medical imaging where more detailed 1 CHAPTER 1. INTRODUCTION image details are required on demand, and high-resolution medical images can aid the doctors to make a correct diagnosis, e.g., in Computed tomography (CT) and Magnetic resonance imaging (MRI) for diagnosis, where the acquisition of multiple images is possible albeit with limited resolution. 1.2 Background Convolutional neural networks (CNN) have been in existence for a long time [2] and recently deep CNN’s have shown an upsurge in popularity due to its various successes in image classification tasks, one of them being the ImageNet Large Scale Visual Recognition Challenge which is a benchmark in object classification and de- tection tasks consisting of millions of images and thousands of classes [3]. CNN’s have also been applied to other sub-problems of computer vision such as object detection [4], face recognition [5] and pedestrian detection [6].Various factors are instrumental in the progress and effectiveness of CNN’s such as A) The advent of more powerful Graphics Processing Units [3], which makes it easier to train more complex models on large datasets B) The exponential increase in the amount of big datawhichhelpsintraininglargemodelsandgettingmoreaccurateresults. C)The proposalinthemachinelearningcommunityusingvariousactivationfunctionssuch as ReLU, LeakyReLU which facilitates the CNN model to converge faster, maintain high accuracy and avoid overfitting [7]. Generative models, particularly GAN’s have shown remarkable results in image generation applications such as super-resolution [8], generating art, Image-to-image translation [9] etc. One advantage of GAN’s is the adversarial loss component that allows it work well with multi-modal outputs, e.g. in image generation tasks where an input can have multiple acceptable correct answers. Traditional machine learn- ing methods use pixel-wise mean squared error as the optimization objective and are hence not able to produce multiple correct outputs. GAN’s excel in tasks which require generating samples resembling a particular distribution. One such task is super-resolution where from a low-resolution image, a high-resolution equivalent has to be estimated, and multiple high-resolution images corresponding to a low- resolution image are possible [9]. Imagerestorationanddenoisingtechniquesdealwithaccountingfornoiseandother disturbances to recover a less degraded image from the original image. Super Res- olution and Image restoration techniques are quite similar theoretically differing to thefactthat,SuperResolutionproducesanupscalednoise-freeimageoftheoriginal one. There has been considerable work in Image restoration using Deep Learning methods to achieve image denoising. Burger et al. have applied The Multi-Layer Perceptron for natural image denoising and post blurring denoising [10]. Jain et al. have used CNN’s for natural image denoising and removing patterns consist- ing of noise such as rain/dirt etc [11]. Cui et al. [12] have proposed to include 2

Description:
with results competitive to the state of the art but none of them have been used on microscopy images. In this thesis, a generative adversarial network,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.