ebook img

Generation of toroidal magnetic fields in accretion disks PDF

0.55 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generation of toroidal magnetic fields in accretion disks

Mon.Not.R.Astron.Soc.000,000–000(2017) Printed17January2017 (MNLATEXstylefilev2.2) Generation of toroidal magnetic fields in accretion disks Mohammadtaher Safarzadeh1(cid:63), Smadar Naoz2, Alexander Sadowski3, Lorenzo Sironi4, Ramesh Narayan5 1SchoolofEarthandSpaceExploration,ArizonaStateUniversity,Tempe,AZ85287-1404,USA; 2DepartmentofPhysicsandAstronomy,UniversityofCalifornia,LosAngeles,CA90095,USA 3MITKavliInstituteforAstrophysicsandSpaceResearch,77MassachusettsAve,Cambridge,MA02139,USA 4DepartmentofAstronomy,ColumbiaUniversity,550W120thSt,NewYork,NY10027,USA 5Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 7 1 0 17January2017 2 n ABSTRACT a Magnetic fields play an important role in the dynamics of accretion disks, however, the ori- J ginofthefieldsisoftenobscured.Hereweshowthatmagneticfieldscanbegeneratedinan 3 initiallynon-magnetizedaccretiondisksthroughtheBiermannbatterymechanism,wherethe 1 radialtemperatureprofileandtheverticaldensityprofileofthesesystemsprovidetheneces- sarilyconditionsforthisprocesstooperatenaturally.Weconsiderthegenerationoffieldsina ] E protoplanetarydisksanddisksaroundBlackHoles(BHs).Forprotoplanetaryaccretiondisks H we find that the generated magnetic fields can be as strong as few Gauss over the lifetime of the disk (5 Myr), for a solar mass star, and weakly dependent on the accretion rate. The . h generatedseedshavetoroidalstructurewithoppositesignintheupperandlowerhalfofthe p disk. The same pattern exists in a thin accretion disk around a rotating BH, where the field - o generationrateincreasesforlargerBH’sspinparametersinaco-rotatingdiskandspinconfig- r uration.Atafixedr/risco,whereristheradialdistancefromtheBH,thebatteryscalesasM−2 t forboththinaccretiondisksandAdvectionDominatedAccretionFlows(ADAF).ForADAFs s a afteronecharacteristicaccretiontimethebatterycangenerateafieldinthegalacticcenterat [ theorderof5×10−6G.Inaddition,wetestthismechanisminGRMHDsimulationsandfind ittobeinagoodagreementwithouranalyticalestimates.Thefactthatthebatteryworksin 1 v thelimitofzeroaccretionrate,itmakesthismechanismaviablecandidatetoprovidetheseed 0 fieldsfromaninitiallynon-magnetizedaccretiondisksuchthatlateronMagnetoRotational 0 Instability(MRI)takesover. 8 3 Keywords: accretion,accretiondiscs—dynamo—instabilities—magneticfields—MHD 0 . 1 0 7 1 INTRODUCTION turbulentdynamoduringthegravitationalcollapseforthefirstgen- 1 eration of protostars (e.g., Schleicher et al. 2010; Schober et al. v: Accretiondisksareassociatedwithawiderangeofastrophysical 2012).Althoughthesemechanismscanplayaroleinprovidingthe phenomena from disks around protostars to Black Holes (BHs). i seed magnetic fields, here we propose that magnetic fields in ac- X These disks are assumed to be magnetized and the accretion to cretiondiskscanbenaturallyformedthroughtheBiermannbattery happenthroughtheMagnetoRotationalInstability(MRI)process r process(Biermann1950). a (Balbus&Hawley1991).However,theoriginofthemagneticfield inthediskisrarelydiscussed.Thereareafewapproachesthatare Biermann(1950)showedthatifaplasmahasarotationalmo- adoptedintheliteraturetoaddressthesourceofmagneticfieldin tion, current must exists, which leads to the generation of mag- accretiondisks.ForthestellarmassBHs,themagneticfieldistypi- netic fields. This process has a wide range of applications from callyassociatedwiththemagneticfieldoftheprogenitorstar(e.g., the generation of magnetic fields in stars (e.g., Biermann 1950; Bisnovatyi-Kogan & Ruzmaikin 1974, 1976), while for a super- Doi&Susa2011)togalacticscalemagneticfields(e.g.,Mestel& massiveBHsthefieldisbelievedtobeaccretedfromthesurround- Roxburgh1962;Widrow2002;Subramanianetal.1994;Subrama- inggas(Narayanetal.2003;Eatoughetal.2013).Themagnetic nian2010;Naoz&Narayan2013).Forexample,Naoz&Narayan fieldsaroundthefirstgenerationofprotostarscanbetheresultof (2013)showedthatmagneticfieldsarenaturallygeneratedinthe largescalecascades,whereweakmagneticfieldsareamplifiedvia earlyuniverse,atintergalacticscales,whichisconsistentwiththe observedfields’strength.TheBiermannbatterywasalsoshownto beabletogeneratemagneticfieldsinsidesupernovabubbles(e.g., (cid:63) E-mail:[email protected] Hanayamaetal.2005). (cid:13)c 2017RAS 2 Safarzadeh,Naozetal. Forthegenerationofseedmagneticfieldsinthismechanism, asthetemperaturesofthedisksareestimatedfromfewthousands anonalignedgradientofelectronsdensityandgradientofelectrons KelvinintheinnerregionsofthediskdowntotensofKelvininthe pressureisneeded.Thissituationnaturallyarisesinthestructureof outerparts.However,asmentionedabove,theBiermannbatteryis accretiondiskswherethepressuregradientismostlyinthevertical independentontheionizationfraction.Weadoptasimpledensity directionandtemperaturehasaradialgradientinthedisk.These andtemperatureprofileforageometricallythin,Keplerianproto- seedmagneticfieldscangrowinlineartimescalesandinadiffer- planetary disk, (for review of the derivation see Armitage 2013). entially rotating disk can lead to a strong magnetohydrodynamic Theaxisymmetricdiskisdescribedbyitsverticalandradialstruc- (MHD) instability through MRI that makes the field to grow ex- ture. Assuming a hydrostatic equilibrium the vertical structure is ponentially with time to reach its equipartition value in the disk determinedbythepressuregradientequationinthezˆdirection (e.g.,Bret2009).Herewefocusongeneratingseedmagneticfield dP in an initially non-magnetized accretion disk. We do not specify =−ρΩ2z, (5) dz K thenaturethatcausestheaccretionandweassumethataccretion whereΩ istheKeplerianfrequencydefinedas: takesplacewhilethediskisnotinitiallymagnetized(i.e.,MRIdoes K notoperate).Turbulentviscositycouldbethoughtofaasplausible (cid:114) GM mechanismforourpurposes(e.g.,Shakura&Sunyaev1973).As ΩK = r3 (6) wewillshowbelow,generationoftheseedmagneticfieldsthrough Assuminganidealgasequationofstate,thedensityprofilein Biermannbatterydependsonlyveryweaklyontheaccretionrate. theverticaldirectionis Therefore,aprioriwedonotrequireMRItobetakingplacetopro- videaccretionforthebatterytowork. ρ= √Σ e2−Hz22 , (7) Shiromoto et al. (2014) studied the generation of magnetic 2πH fields in a first generation proto-circumstellar disk based on 2D WiththescaleheightdefinedasH=c /Ω andthespeedofsound s K radiation hydrodynamics simulations. Unlike their work, here we hasonlyaradialdependency(e.g.,Armitage2013) study a range of applications from generation of seed magnetic (cid:115) fieldsaroundaprotostar,tosupermassiverotatingblackholeatthe k T(r) c = B . (8) centerofthegalaxy. s µm p Thepaperisorganizedasfollow:In§2weintroducetheBier- mannbatteryequation.In§3weapplytheBiermannbatteryequa- Thesurfacedensity,Σ,isgivenby tion in protoplanetary disk setting. In §4 the battery is applied in  (cid:114)  thinaccretiondiskaroundKerrblackholes.In§5wecomparethe Σ(r)= 3Mπ˙ν1− Rr∗ , (9) ratespredictedforADAFswithonesobtainedforstate-of-the-art generalrelativistic(GR)MHDsimulationsofradiativelyinefficient whereν = Hc α(Shakura&Sunyaev1973).αisadimensionless s accretionflowsandIn§6wesummarizeandgiveconclusions. parameterandourresultsdoesnotdependonitsspecificvalue. Thetemperatureradialprofileisdeterminedbytheaccretion rateandandthebalanceofheatingandcoolinginthediskwhich 2 BIERMANNBATTERY leadstoradialeffectivetemperatureprofileof  (cid:114)  Tnohne-vgaenniesrhaitniogncroofssmpargondeuticctofifeledlsecitnroBnienrummabnenrbdaetntesirtyyigsradduieentto, Te4ff(r)= 38GπMσrM3˙ 1− Rr∗ . (10) ∇n andelectronpressuregradient,∇P e e whereσistheBoltzmannconstant.Wecomputethebatteryatz= Hforallthecalculations.Tokeeptheanalysissimple,wesetT ∼ ∂B ∇n ×∇P e =∇×(u×B)−c e e . (1) Teff ineq(4)andT ∼Teff ineq(8).1Since∇ρand∇Tebothhave ∂t en2 e rˆandzˆcomponents,thefieldisgeneratedinthetoroidaldirection, Assumingidealgasequationofstate, P = n k T andassuming i.e., e e B e that the temperature of the electrons is equal to that of the gas, (cid:32) (cid:33) ∂B ck ∂T ∂ρ ∂ρ∂T T =T wecanre-write∇n ×∇P as =− B e − e φˆ (11) e disk e e ∂t eρ ∂r ∂z ∂r ∂z ∇n ×∇P =∇n ×(n ∇T +T ∇n )k , (2) e e e e e e e B The Biermann battery will work so long as the density and where k is Boltzman constant. Given n = χ ρ, where χ is the temperaturegradientsarenotparalleltoeachother.Thiscondition B e e e ionizationfraction,wefind willalmostalwaysbesatisfiedinadisk.Toavoidgettingintode- ∇n ×∇P =n k ∇n ×∇T =n k χ ∇ρ×∇T , (3) tails,weestimatetheorderofmagnitudeoftheBiermannbattery e e e B e e e B e e bycrossingtheverticalgradientofdensitywiththeradialgradient Wherewithouttheinductiontermwehave oftemperature.ThereforeEquation(11)canbewrittenas: ∂B =−ckB∇ρ×∇Te (4) ∂B ck (cid:32)∂T ∂ρ(cid:33) ∂t e ρ =− B e φˆ, (12) ∂t eρ ∂r ∂z Notethattheionizationfraction,χ ,cancelsoutandthustheequa- e which,canbewrittenas: tiondependsonlyonthedensityandtemperatureofthesystem. √ ∂B cGMm µ7R +r( R /r−6) = p ∗ ∗ zφˆ (13) ∂t 8e r4(r−R ) ∗ 3 PROTOPLANETARYDISK Planetsareformedfromtheprotoplanetarydisksmadeofgasand 1 Thediskmid-planetemperatureisoftenjustafactorofafewlargerthan dust surrounding young stars. These disks are not fully ionized, Teff.Wefeelthereforethatthisapproximationisreasonable. (cid:13)c 2017RAS,MNRAS000,000–000 Generationoftoroidalmagneticfieldsinaccretiondisks 3 ��×��-�� �=� �=�(���������) ��-�� �=��� ��×��-�� �=-�(���������) �=���� (ϕ)(/)��� � |/∂(/)���� ��-�� ∂| ��-�� -��×��-�� ��-�� -��×��-�� ��� ��� ��� ��� ��� ��� ��� �/�* ��� ��� ��� ��� ��� ��� ��� � Figure1.Magnitudeoftherateofmagneticfieldgenerationasafunction ofr/R∗fora1M(cid:12)staratz=Honthedisk.Generatedfieldschangetheir ����� signatrturn =49/36R∗.Theseedshaveanoppositesignontheupperand Figure 2. Shows the magnitude of magnetic field generation rate as a lowerhalfofthedisk.TherateofseedgenerationthroughBiermannbattery function of r/risco for a 4 × 106M(cid:12) black hole with accretion rate of fwoeraaklpyrodteoppelnandeetnatryondtihskeiasccprreotpioonrtiroanteal(∝toMt˙h1e/8a)c.cWreetinadgomptaµss=M2a.3ndinotnhliys Md˙er=so1f0m−1a0gMni(cid:12)t/uydeeasrtrfoonrgdeiffreinrean=t0sp.9in9pcaarsaemceotmerpsa.rTehdewbiathttearyScishawbaoruzstc2hoilrd- calculation. blackholeatallradii.Theradiusatwhichthegeneratedseedfieldschange signinazimuthaldirection(rturn)becomessmallerasthespinparameteris Notethatthemagneticfieldchangesitsazimuthaldirectiongoing increased.rturn =2×riscoforaSchwarzschildblackhole.Wesetz=Hin thiscalculation.Thefieldchangesitssignacrosstheequatorialplaneinφˆ fromtheuppertothelowerhalfofthedisk.Thereisnodependence direction. onaccretionrateinthisequation,however,aswecomputethebat- teryatz=H,itwouldmeanaweakdependenceonaccretiondate (∝M˙1/8). which assuming a hydrostatic equilibrium leads to the following The magnetic field generated over an accretion timescale densityprofile (Trh/eurb)aitsterayt cthaenoorpdeerratoefov5e0rµtGhefolirfeatim1eMo(cid:12)fsthtaerdwisikthanRd∗c=an1reRac(cid:12)h. ρ= √Σ e2−Hz22BC (cid:114)C , (15) aboutfewtotensofGaussinlargepartsofthedisk.InFigure1we 2πH B showtheseedsgenerationrateinaproptoplanetarydisk.Theverti- where ci.ael.,dzist=ancHe.adTohpetegdenineroauterdcasleceudlasticohnasnsgcealtehseiarsstihgenscfraolemhueipgphetr, Σ= M˙ (cid:32)1− (cid:114)risco(cid:33) , (16) half to lower half of the disk and also at the characteristic radius 3πν r rturn=49/36R∗. and H,ν,Σ are a function of r and a where a is specific angular We note that the change of azimuthal sign of ∂B/∂t at rturn momentumoftheblackhole. arisesbecauseTe hasamaximumatthisradius.Thisispredicted Thetemperatureprofilefromthebalanceofheatingandcool- bythethindiskmodel,butwhetherthisexactshapeisfollowedby inginthediskis realdisksisdisputed. Theequipartitionfieldcanbeestimatedbyequatingthemag- T4(r)= 3GMM˙ (cid:32)1− (cid:114)risco(cid:33)D (17) netic pressure ∼ B2/8π and the pressure of the ionized gas. For e 8πσr3 r B protoplanetarydisksitisintheorderof103GatthevicinityofR , ∗ A,B,CandDarerelativisticcorrection(Novikov&Thorne1973; whichisordersofmagnitudelargerthantheBiermannseedfield. Page&Thorne1974;Doerreretal.1996)definedas: Furthermore,wealsoestimatewhenMRIstartstodominatedthe accretionprocess(cid:112).Takingthemostunstablewavelength,∼2πvA/Ω, A = 1− 2GM + a2 where v = B/ 4πρ2 is the Alfven wave velocity, and equating c2r c2r2 A √ it to H = cs/Ω, for z ∼ H, we find magnetic field peaking at B = 1− 3GM + 2a GM r/R(cid:12) ∼ 1.5, with strength of ∼ 200 G, which is order of magni- c2r c2r3/2 √ tudelargerthantheBiermannfieldatthisradiusafter5Myr,and 4a GM 3a2 staysinsimilarorderofmagnitudedifferenceatallradii. C = 1− + c2r3/2 c2r2 √ 1 (cid:90) r x2c2−6xGM+8a xGM−3a2 D = √ √ (cid:16) √ (cid:17) dx . (18) 4 SEEDSINDISKAROUNDKERRBLACKHOLES 2 r risco x x2c2−3xGM+2a xGM Following Shakura & Sunyaev (1973) and Novikov & Thorne whereriscoistherootofthefollowingequationforthecaseof (1973),theverticaldensityandradialtemperatureprofilesofthese aco-rotatingdisk: disksisdescribedbysimilarequationsaspresentedabove,withthe (cid:114) MGc a MGc a followingrelativisticcorrections: 1−6 +8 −3 =0 (19) r c r3 cr dP GM C =−ρ z , (14) Here we explore a simple example of a thin accretion disk dz r3 B withaconstantverticaltemperatureprofile(thus,Equation(12)is applicable)inthegalacticcenter.Wenotethatthetheaccretionsys- 2 Forsimplicityweassumeacompletelyionizedgas. temaroundthesupermassiveblackholeatthecenterofourgalaxy (cid:13)c 2017RAS,MNRAS000,000–000 4 Safarzadeh,Naozetal. expressthediskprofileusingthefollowingscalingrelations:  ��-�� �=�×�����=��-��  2 γ−1 �=�×�����=��-� c2 = v2 (20)  s 3γ−5/9 k �=�×�����=��-�� ��-�� (cid:32) γ−1 (cid:33) /)�� vr = − γ−5/9 αvk (21) ( |/∂�� ��-�� M˙ ∂| ρ = − , (22) 4πRHv r ��-�� wherethescaleheightHisalongthezcoordinate,v istheradial √ r componentofthevelocityofthegas,v = GM/ristheKeplerian k velocity,andγisthespecificheatofthegasanditsvalueisbetween ��-�� ��� ��� ��� ��� ��� ��� ��� 4/3to5/3,foraradiation-pressuredominatedandanon-relativistic � gas-pressuredominatedaccretionflow,respectively.Weassumea ����� gaspressuredominateddisk,i.e., P = c2ρ,andthedensityofthe s Figure3.Showstheabsolutemagnitudeofmagneticfieldgenerationrateas gasrelatestotheelectronnumberdensityvia:ne = χeρ/µ,where afunctionofradiusfromthelaststablecircularorbit(risco)aSchwarzschild χeistheionizationfractionandµisthemeanmolecularmass.We black hole with different values of M in M(cid:12) units and M˙ in (M(cid:12)/year) adoptµ=1.18mpandχe =1wherempisthemassoftheproton. units.ThesolidlinecorrespondstoaSchwarzschildblackholewithM = UsingEquation(1)wefindthat 4×106M(cid:12) andM˙ = 10−10M(cid:12)/year.Thedashedlinecorrespondstothe samemassbutwith10timeshigheraccretionrate.Thedottedlineisfora ∂B ∼ c ∂ρ ∂c2sφˆ ∼ µ6cGM(γ−1)φˆ, (23) blackholewith10timessmallermassbutthesametheaccretionrate.At ∂t en ∂H ∂r er3(9γ−5) e afixedr/riscothebatteryisproportionaltoM−2andisweaklydependent whereinourlasttransitionwehavepluggedintherelationin onaccretionrate(∝M˙1/8).Theradialturningpoint(rturn)isindependentof bothmassandaccretionrate.Weassumez=Hinthiscalculation. Equations(20)-(22).NotethatinourADAFmodelthescaleheight H describes the vertical component, and due to the “puffed up" natureofthediskwesetH∼r.Thishassimplescalingof: ∂B (cid:32) r (cid:33)−3(cid:32) M (cid:33)−2 γ−1 ∼3.6×106 G/sec, (24) ∂t r M (9γ−5) sc (cid:12) isprobablybestmodeledasanADAF(e.g.,Narayan&Yi1994; Narayanetal.1995;Abramowiczetal.1988),whichareexpected wherer = 2GM/c2 istheSchwarzschildradius.Foracharacter- sc toresultinanevenlargerfieldstrength.WediscussADAFsinsec- isticaccretiontimet ∼r/v wefind: acc r tion5. (cid:32)M (cid:33)(cid:18)r (cid:19)3/2 γ−1 Figure2showsthemagneticfieldgrowthratefora4×106M B∼17.9 (cid:12) sc G, (25) (cid:12) M r (9γ−5) black hole with different spin parameters as a function of r/r . isco Thebatteryisstrongerforblackholeswithlargerspinparameterat whichisordersofmagnitudesmallerthantheequipartitionfieldin afixedr/r . anADAFwhichcanbeestimatedas: isco We find that the Biermann battery in the thin accretion disk M (cid:18)r (cid:19)5/4 modelisweaklydependentonaccretionrate(∝M˙1/8atz=H)and Beq ∼ 7.8×107G M(cid:12) rsc × proportionalto M−2 atafixedr/risco.ThisisillustratedinFigure (cid:32) M˙ (cid:33)1/2(cid:32) 1−γ (cid:33)1/2 3.Asinthecaseofprotoplanetarydisk,thegeneratedseedshave . (26) 10−10M /yr α(5/9−γ) oppositesignintheupperandlowerhalfofthedisk.Thechangeof (cid:12) azimuthalsignofdB/dtatrturnarisesbecauseTehasamaximumat Fromtheserelationsweseethatforextremelylowaccretionrates thisradiuswhichispredictedbythethindiskmodel(seeShafeeet (∼ 2.3×10−17(r/r )1/4 M yr−1)thetwomagneticfieldstrengths sc (cid:12) al.(2008);Nobleetal.(2009);Kulkarnietal.(2011)foradiscus- equate. sionofthezero-torqueconditionattheISCOandtheeffectithas Wenowcomparetheestimatesofthegrowthrateoftheaz- on the viscous heating profile in a thin accretion disk). However, imuthalcomponentofthemagneticfieldduetothebatteryobtained Bφ changesitssignacrossthemidplaneandthisresultisarobust aboveundersimplifyingassumptions,withratescalculatedusinga predictionofthetheory. moredetailedaccretionflowstructureproducedbyGRMHDsim- ulations. For this purpose, we took the model of radiatively inef- ficient,two-temperatureaccretionflowpresentedanddiscussedin Sadowskietal.(2016)(modelRad8).Thisparticularsolutionde- scribesanaccretionflowonanon-rotating,10M BHwithaverage (cid:12) accretionrateoftheorderof4×10−9M˙ .Tocalculatethebattery- Edd relatedgrowthofthemagneticfieldwetookthetime-averagedout- 5 ADVECTION-DOMINATEDACCRETIONFLOWS putofthesimulationandappliedEq.(4).Resultsarepresentedin DISKS Fig4. Inmanyaccretiondisksaroundblackholestheviscouslydissipated The top panel presents the growth rate multiplied by radius accretionenergycangointoheatingtheaccretionflowratherthan cubed,i.e.,dB/dt(r/r )3,onthepoloidalplaneofthesimulation. sc beingradiatedaway.Thisisthemostimportantcharacterizationof The values are given in G/s. The most profound feature is the advection-dominatedaccretionflows(ADAFs)disks(seeforrecent asymmetryagainsttheequatorialplane.Thisreflectsthefactthat review: Yuan & Narayan 2014). Following Narayan & Yi (1994) thegradientsofdensityandtemperaturearesymmetricwithrespect self-similarsolution,forα << 1andanaxis-symmetricflow,we to the equatorial plane, and therefore their cross product changes (cid:13)c 2017RAS,MNRAS000,000–000 Generationoftoroidalmagneticfieldsinaccretiondisks 5 • Protoplanetary disks: Assuming a simple disk profile, we foundthatatoroidalmagneticfieldscannaturallygrowfromini- tiallynotmagnetizedaccretiondisksinprotoplanetarydisksover thelifetimeofthedisk(attheorderoffewtotensofGauss,seeFig- ure1).Thesefieldsarelinearlyproportionalwiththecentralmass and weakly dependent of the accretion rate. The generated seeds haveoppositesignsintheupperhalf(+φˆ)andlowerhalf(−φˆ)of thedisk.Wealsofindthatthesefieldschangesignatacharacteris- ticradiusofr =49/36R .Notethattheradialchangeofsignat turn ∗ r arisesbecauseT ismaximumatthisradius,aspredictedbythe turn e thindiskmodel.However,thispictureisdisputedintheliterature. • Thin accretion disk around a rotating BH: We adopted a disk temperature and density profile, which includes relativistic corrections (following Novikov & Thorne 1973; Page & Thorne 1974;Doerreretal.1996).Theseedshaveoppositesingintheup- per and lower half of the disk and also change their sign in the azimuthal direction at r = 2×r for a Schwarzschild black turn isco hole.LargerBHspinsyieldsmallervaluesofr andlargerrateof turn seedgeneration(seeFigure3).WenotethatthevanishingofT at e r=r ,(aspredictedbyShakura&Sunyaev1973)iscontrover- ISCO sialbecauseitcomesfromthezero-torqueboundaryconditionat theISCOandfromignoringadvection.Thus,thebehaviorofsign Fgiivgeunrein4.GT/hs,eignroawGthRrMatHeDofstihmeualzaitmiounthoaflamraagdniaettiivcefilyelidn,edffiBc/ident(tr/arcsccr)e3-, flipmaynotberealistic.Atafixedr/riscothebatteryscalesasM−2 andthebatteryisstrongerforBHswithlargerspecificangularmo- tionflow(modelRad8fromSadowskietal.2016)fora10 M(cid:12) BH.The toppanelshowsthegrowthrateinthepoloidalplane.dB/dtchangessigns mentum.Therelativisticdiskprofileleadstoaweakdependency over the equatorial plane because of symmetry in gradients of density ontheblackholeaccretionrate∝M˙1/8(seeFigure3). and temperature. The bottom panel shows the average absolute value of • ADAF: We also analyzed the generation of magnetic field dB/dt(r/rsc)3averagedverticallyover−1<z/r<1. in an ADAF, where our analytic estimates, based on Narayan & Yi (1994) self-similar solution, are in good agreement with with GRMHDsimulations(seeFigure4).UsingEquation(25)wecan sign.Forthesamereasonofdiskstructuresymmetry,thegrowth estimate the magnetic field generated after one characteristic ac- rate at the equatorial plane is zero. Far from the plane, the field cretiontimeforthediskaroundthecentralBHinourgalacticcen- does not change significantly and reaches values of the order of ter. We find that the Biermann battery can naturally give rise to dB/dt(r/rsc)3≈1000G/s. ∼ 5×10−6 GforthesupermassiveBHatthecenterofourgalaxy The bottom panel of Fig 4 shows the absolute value of the within one accretion timescale. After one year of operation this growth rate averaged vertically over the region −1 < z/r < 1. It mechanismcannaturallyreachamagnitudeof7Gverynearthe confirmsthetypicalvalueandshowsthatthegrowthratescalewell accretionradius(r ∼ r ),whichisattheorderofthefewGesti- sc withthethirdpowerofradius.Theaveragevalueshouldbecom- mationsofthemagneticfieldstrengthinthevicinityofthegalactic pared to the analytical prediction based on Eq. (24) which gives, center(e.g.,Mos´cibrodzkaetal.2009). for10M ,γ=5/3,andχ =1, (cid:12) e Wenotethatwhilethereisamplediscussionintheliterature ∂B(cid:32) r (cid:33)3=2400G/s. (27) abouttheroleofpoloidalfield(e.g.,Narayanetal.2003)insub- ∂t r sequentevolutionofaccretiondisks,thereislittlediscussionabout sc Bˆ .Ourstudyshowsthatthisfieldnaturallyevolvesindisksand Havinginmindthatthisestimatewasderivedundersimplifiedas- φ thereforeitwouldbeinterestingtosimulatetherolethatBiermann- sumptions about the vertical and radial structure of ADAFs, one generated Bˆ might play in the evolution of the accretion disks. shouldconsidertheagreementverygood. φ Thismayalsohelptobetterunderstandtheroleofazimuthalsign reversalintheupperandlowerhalfofthediskandpotentiallyat r=r . turn 6 DISCUSSION The generation of magnetic fields through the radiation pressure 7 ACKNOWLEDGEMENTS on the electrons in the inner edge of the accretion disks has beendiscussedinpreviousworks(Contopoulos&Kazanas1998; MSissupportedbytheNationalScienceFoundationundergrant Bisnovatyi-Koganetal.2002;Contopoulosetal.2015).Inthislet- AST14-07835 and by NASA under theory grant NNX15AK82G. terweshowedthatlargetoroidalmagneticfieldscouldnaturallybe SNacknowledgespartialsupportfromaSloanFoundationFellow- generatedthroughBiermannbatteryprocessstartinginitiallyfrom ship. zeromagneticfield.Theverticaldensityprofileofanaccretiondisk andtheradialtemperatureprofilewhicharisesduetothebalance between heating and cooling, lead to generation of toroidal seed REFERENCES magneticfieldthroughtheBiermannbattery.Thesetoroidalfields changetheirsignattheequatorialplaneofthedisk. Abramowicz,M.A.,Czerny,B.,Lasota,J.P.,&Szuszkiewicz,E. Weconsideredfewastrophysicalexamples. 1988,AstrophysicalJournal,332,646 (cid:13)c 2017RAS,MNRAS000,000–000 6 Safarzadeh,Naozetal. Armitage,P.J.2013,AstrophysicsofPlanetFormation,byPhilip Yuan,F.,&Narayan,R.2014,Ann.Rev.Astron.Asrophys.,52, J. Armitage, Cambridge, UK: Cambridge University Press, 529 2013, Widrow,L.M.2002,ReviewsofModernPhysics,74,775 Balbus,S.A.,&Hawley,J.F.1991,AstrophysicalJournal,376, 214 Bret,A.2009,AstrophysicalJournal,699,990 Biermann,L.1950,ZeitschriftNaturforschungTeilA,5,65 Bisnovatyi-Kogan, G. S., Lovelace, R. V. E., & Belinski, V. A. 2002,AstrophysicalJournal,580,380 Bisnovatyi-Kogan,G.S.,&Ruzmaikin,A.A.1974,Astrophysics &SpaceScience,28,45 Bisnovatyi-Kogan,G.S.,&Ruzmaikin,A.A.1976,Astrophysics &SpaceScience,42,401 Boldyrev,S.,&Yusef-Zadeh,F.2006,AstrophysicalJournalLet- ters,637,L101 Contopoulos, I., Nathanail, A., & Katsanikas, M. 2015, Astro- physicalJournal,805,105 Contopoulos,I.,&Kazanas,D.1998,AstrophysicalJournal,508, 859 Doerrer,T.,Riffert,H.,Staubert,R.,&Ruder,H.1996,Astron- omy&Astrophysics,311,69 Doi,K.,&Susa,H.2011,AstrophysicalJournal,741,93 Eatough,R.P.,Falcke,H.,Karuppusamy,R.,etal.2013,Nature, 501,391 Hanayama,H.,Takahashi,K.,Kotake,K.,etal.2005,Astrophys- icalJournal,633,941 Kulkarni, A. K., Penna, R. F., Shcherbakov, R. V., et al. 2011, MonthlyNoticesoftheRoyalAstronomicalSociety,414,1183 LaRosa,T.N.,Brogan,C.L.,Shore,S.N.,etal.2005,Astrophys- icalJournalLetters,626,L23 Mestel,L.,&Roxburgh,I.W.1962,AstrophysicalJournal,136, 615 Mos´cibrodzka,M.,Gammie,C.F.,Dolence,J.C.,Shiokawa,H., &Leung,P.K.2009,AstrophysicalJournal,706,497 Narayan, R., & Yi, I. 1994, Astrophysical Journal Letters, 428, L13 Narayan,R.,Yi,I.,&Mahadevan,R.1995,Nature,374,623 Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2003, PublicationsoftheAstronomicalSocietyofJapan,55,L69 Naoz, S., & Narayan, R. 2013, Physical Review Letters, 111, 051303 Noble,S.C.,Krolik,J.H.,&Hawley,J.F.2009,Astrophysical Journal,692,411 Novikov,I.D.&Thorne,K.S.1973,inBlackHoles(LesAstres Occlus),343–450 Page, D. N. & Thorne, K. S. 1974, Astrophysical Journal, 191, 499 Sadowski,A.,Wielgus,M.,Narayan,R.,etal.2016,MNRAS,in press,arXiv:1605.03184 Shafee,R.,McKinney,J.C.,Narayan,R.,etal.2008,Astrophys- icalJournalLetters,687,L25 Shakura, N. I., & Sunyaev, R. A. 1973, Astronomy & Astro- physics,24,337 Schleicher,D.R.G.,Banerjee,R.,Sur,S.,etal.2010,Astronomy &Astrophysics,522,A115 Schober,J.,Schleicher,D.,Federrath,C.,etal.2012,Astrophysi- calJournal,754,99 Shiromoto, Y., Susa, H., & Hosokawa, T. 2014, Astrophysical Journal,782,108 Subramanian,K.,Narasimha,D.,&Chitre,S.M.1994,Monthly NoticesoftheRoyalAstronomicalSociety,271, Subramanian,K.2010,AstronomischeNachrichten,331,110 (cid:13)c 2017RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.