ebook img

Generating functions for special polynomials and numbers including Apostol-type and Humbert ... PDF

16 Pages·2017·0.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generating functions for special polynomials and numbers including Apostol-type and Humbert ...

Generating Functions for Special Polynomials and Numbers Including Apostol-type and Humbert-type Polynomials GulsahOzdemir,YilmazSimsekandGradimirV.Milovanovic´ Abstract. The aim of this paper is to give generating functions and to prove variouspropertiesforsomenewfamiliesofspecialpolynomialsandnumbers. Severalinterestingpropertiesofsuchfamiliesandtheirconnectionswithother polynomialsandnumbersoftheBernoulli,Euler,Apostol-Bernoulli,Apostol- Euler,GenocchiandFibonaccitypearepresented.Furthermore,theFibonacci typepolynomialsofhigherorderintwovariablesandanewfamilyofspecial polynomials(x,y)(cid:55)→G (x,y;k,m,n),includingseveralparicularcases,arein- d troduced and studied. Finally, a class of polynomials and corresponding num- bers,obtainedbyamodificationofthegeneratingfunctionofHumbert’spoly- nomials,isalsoconsidered. Mathematics Subject Classification (2010). 05A15, 11B39, 11B68, 11B73, 11B83. Keywords.Generatingfunction,Fibonaccipolynomials,Humbertpolynomials, Bernoullipolynomialsandnumbers,Eulerpolynomialsandnumbers,Apostol- Bernoullipolynomialsandnumbers,Apostol-Eulerpolynomialsandnumbers, Genocchipolynomials,Stirlingnumbers. 1. Introductionandpreliminaries The special polynomials and numbers play an important role in many branches of mathematicsandtheirdevelopmentisalwaysactual.Manypapersandbookswere publishedinthisverywidearea.Wementiononlyafewbooksconnectedwithour resultsinthiswork(cf.[4],[7],[27],[28]). In this paper we consider some new families of numbers and polynomials, includingtheirgeneratingfunctions,severalinterestingproperties,aswellastheir ThesecondauthorwassupportedbytheResearchFundoftheAkdenizUniversity.Thethirdauthorwas supportedinpartbytheSerbianAcademyofSciencesandArts(No.Φ-96)andbytheSerbianMinistry ofEducation,ScienceandTechnologicalDevelopment(No.#OI174015). 2 G.Ozdemir,Y.SimsekandG.V.Milovanovic´ connectionswithotherpolynomialsandnumbersoftheBernoulli,Euler,Apostol- Bernoulli,Apostol-Euler,Genocchi,FibonacciandLucastype.Inordertogiveour results,weneedtomentionseveralspecialclassesofpolynomialsandnumberswith theirgeneratingfunctions. 1◦TheBernoullipolynomialsofhigherorderB(h)(x)aredefinedbymeansof d thefollowinggeneratingfunction (cid:18) text (cid:19)h ∞ td F (x,t;h)= = ∑B(h)(x) . (1.1) Bh et−1 d d! d=0 Forh=1,(1.1)reducestothegeneratingfunctionoftheclassicalBernoullipolyno- (1) mials,B (x)=B (x).Furthermore,forx=0,thisgivesthewellknownBernoulli d d numbersB =B (0).Fordetailssee[1]–[7],[13]–[22],[29]. d d 2◦TheApostol-Bernoullipolynomialswereintroducedin1951byApostol[1] bymeansofthefollowinggeneratingfunction text ∞ td F (x,t;λ)= = ∑B (x,λ) , (1.2) AB λet−1 d d! d=0 where|t+logλ|<2π (fordetailssee[1]–[7],[13]–[22],[29]).Severaltheirinter- esting properties, formulas and extensions have been obtained by Srivastava [26] (seealsotherecentbook[27]).Usingthesuitablegeneratingfunctionsseveralau- thorshaveobtaineddifferentgeneralizationsandunificationsofthesenumbersand polynomials(cf.[2],[5],[13],[14],[16],[17],[22],[29]). Substitutingx=0in(1.2),forλ (cid:54)=1,wegettheApostol-Bernoullinumbers B (λ), d B (λ)=B (0,λ), (1.3) d d and they can be expressed it terms of Stirling numbers of the second kind [1, Eq.(3.7)].Settingλ=1in(1.2),wegettheclassicalBernoullipolynomialsB (x)= d B (x,1). d Alternatively,theApostol-Bernoullinumberscanbeexpressedintheform λϕ (λ) B (λ)=0, B (λ)=(−1)d−1d d−2 , d≥1, (1.4) 0 d (λ−1)d whereϕ (λ)aremonicpolynomialsinλ andofdegreekandϕ (0)=1.Usingthe k k generatingfunction(1.2)forx=0and(1.4),itiseasytoprovethatthepolynomials ϕ (λ) are self-inversive (cf. [20, pp. 16–18]), i.e., λkϕ (1/λ)≡ϕ (λ). Also, we k k k canprovethat k (cid:18)k+1(cid:19) ϕ (λ)=(1−λ)k+λ ∑ (1−λ)ν−1ϕ (λ), k≥0, (1.5) k k−ν ν ν=1 GeneratingFunctionsforSpecialPolynomialsandNumbers 3 aswellasthefollowingdeterminantform (cid:12)(cid:12) −1/λ 0 0 ··· 0 1 (cid:12)(cid:12) (cid:12) (cid:12) (cid:12)(cid:12) (cid:0)2(cid:1) −1/λ 0 ··· 0 ξ (cid:12)(cid:12) (cid:12) 1 (cid:12) (cid:12)(cid:12) (cid:0)3(cid:1)ξ (cid:0)3(cid:1) −1/λ ··· 0 ξ2 (cid:12)(cid:12) ϕk(λ)=(−1)kλk(cid:12)(cid:12)(cid:12)(cid:12) 1... 2... ... ... ... ... (cid:12)(cid:12)(cid:12)(cid:12), (cid:12) (cid:12) (cid:12)(cid:12) (cid:0)k(cid:1)ξk−2 (cid:0)k(cid:1)ξk−3 (cid:0)k(cid:1)ξk−4 ··· −1/λ ξk−1 (cid:12)(cid:12) (cid:12) 1 2 3 (cid:12) (cid:12)(cid:12) (cid:0)k+1(cid:1)ξk−1 (cid:0)k+1(cid:1)ξk−2 (cid:0)k+1(cid:1)ξk−3 ··· (cid:0)k+1(cid:1) ξk (cid:12)(cid:12) 1 2 3 k whereξ =1−λ.Forexample,wehave ϕ (λ)=1, ϕ (λ)=λ+1, ϕ (λ)=λ2+4λ+1, 0 1 2 ϕ (λ)=λ3+11λ2+11λ+1, ϕ (λ)=λ4+26λ3+66λ2+26λ+1, 3 4 ϕ (λ)=λ5+57λ4+302λ3+302λ2+57λ+1, 5 ϕ (λ)=λ6+120λ5+1191λ4+2416λ3+1191λ2+120λ+1, 6 etc.Using(1.5)wecanconcludethatϕ (1)=(k+1)!. k 3◦ The Apostol-Euler polynomials of the first kind E (x,λ) are defined by d meansofthegeneratingfunction 2ext ∞ td F (x,t;λ)= = ∑E (x,λ) , (1.6) AE λet+1 d d! d=0 where |2t+logλ|<π (cf. [1]–[7], [22], [29]). For λ (cid:54)=1, substituting x=1/2 in (1.6)andmakingsomearrangement,weobtaintheApostol-Eulernumbers.Setting λ =1in(1.6),wegetthefirstkindEulerpolynomialsE (x)=E (x,1). d d 4◦ TheApostol-Eulerpolynomialsofthesecondkindaredefinedbymeansof thegeneratingfunction 2 ∞ td etx= ∑E∗(x,λ) (1.7) λet+λ−1e−t d d! d=0 (cf. [25]). A special kind of these polynomials for λ =1 are denoted by E∗(x)= d E∗(x,1),andthecorrespondingnumbersbyE∗=E∗(0).Byusing(1.6)and(1.7), d d d forx=0,wehavethefollowingrelation (cid:18) (cid:19) 1 E∗(0,λ)=2dλE ,λ2 . d d 2 ThesecondkindEulernumbersE∗ aredefinedbythespecialcaseofthefirst d kindEulerpolynomials,E∗=2dE (1/2). d d 5◦TheEulerpolynomialsofhigherorderE(h)(x)aredefinedbymeansofthe d followinggeneratingfunction (cid:18) 2ext (cid:19)h ∞ td F (x,t;h)= = ∑E(h)(x) , (1.8) Eh et+1 d d! d=0 4 G.Ozdemir,Y.SimsekandG.V.Milovanovic´ (1) sothat,obviously,E (x)=E (x). d d 6◦ The Genocchi numbers and polynomials and their generalizations. The GenocchinumbersG aredefinedbythegeneratingfunction d 2t ∞ td F (t)= = ∑G , (1.9) g et+1 dd! d=0 where|t|<π (cf.[13],[16],[22],[29]). In general, for these numbers we have G =0, G =1, and G =0 for 0 1 2d+1 d∈N.SomerelationsbetweentheGenocchi,BernoulliandEulernumbersaregiven byG =2(cid:0)1−22d(cid:1)B andG =2dE .ThesequenceofGenocchinumbersis 2d 2d 2d 2d−1 {g } ={0,1,−1,0,1,0,−3,0,17,0,−155,0,...}. d d≥0 The Genocchi polynomials G (x) are defined by the following generating d function ∞ td F (x;t)=F (t)ext = ∑G (x) , (1.10) g g d d! d=0 where|t|<π.Using(1.10),itiseasytoseethat d (cid:18)d(cid:19) G (x)= ∑ G xd−k d k k k=0 ThefirstsevenGenocchipolynomialsare G (x)=0, G (x)=1, G (x)=2x−1, G (x)=3x2−3x, 0 1 2 3 G (x)=4x3−6x2+1, G (x)=5x4−10x3+5x, 4 5 G (x)=6x5−15x4+15x2−3. 6 The Apostol-Genocchi polynomials g (x,λ) are defined by the generating d function 2t ∞ td ext = ∑G (x,λ) , (1.11) λet+1 d d! d=0 where |2t+logλ| < π. Setting λ = 1 in (1.11), we get the classical Genocchi polynomials G (x) = G (x,1), which reduce to the classical Genocchi numbers d d G =G (0)forx=0. d d Substitutingx=0in(1.11),forλ (cid:54)=1,weobtaintheApostol-Genocchinum- bers G (λ)=G (0,λ). For some details, properties and other generalizations see d d [11],[13],[16],[22],[26],[27],[29]. 7◦TheStirlingnumbersofthesecondkindS (n,k;λ)aredefinedbymeansof 2 thefollowinggeneratingfunction(cf.[3],[24],[26]): (λet−1)k ∞ tn F (t,k;λ)= = ∑S (n,k;λ) , (1.12) S 2 k! n! n=0 wherek∈N andλ ∈C. 0 GeneratingFunctionsforSpecialPolynomialsandNumbers 5 ThegeneralizedStirlingnumbersandpolynomialshavebeendefinedbymeans ofthefollowinggeneratingfunction(cf.[3]): (et−1)k ∞ tn etα = ∑S(α)(n,k) . (1.13) k! n! n=0 Severalcombinatorialpropertiesofthesepolynomialshavebeenprovedin[3]. Simsek[24]hasmodifiedthegeneratingfunction(1.13),definingtheso-called λ-arraypolynomialsSn(x;λ)bymeansofthefollowinggeneratingfunction k (λet−1)k ∞ tn F (t,x,k;λ)= etx= ∑Sn(x;λ) , (1.14) A k! k n! n=0 wherek∈N andλ ∈C.Substitutingλ =1,theλ-arraypolynomialsreducetothe 0 arraypolynomials,S(α)(n,k)=Sn(α;1)(cf.[3],[24]). k 8◦ The Humbert polynomials (cid:8)Πλ (cid:9)∞ were defined in 1921 by Humbert n,m n=0 [12].Theirgeneratingfunctionis ∞ (1−mxt+tm)−λ = ∑Πλ (x)tn. (1.15) n,m n=0 Thisfunctionsatisfiesthefollowingrecurrencerelation(cf.[7],[18],[19]andref- erencestherein): (n+1)Πλ (x)−mx(n+λ)Πλ (x)−(n+mλ−m+1)Πλ (x)=0. n+1,m n,m n−m+1,m AspecialcaseofthesepolynomialsaretheGegenbauerpolynomialsgivenas follows[8]: Cλ(x)=Πλ (x) n n,2 andalsothePincherlepolynomialsgivenasfollows(see[23],[12]): P (x)=Π−1/2(x). n n,3 Later,Gould[9]studiedaclassofgeneralizedHumbertpolynomials,P (m,x,y,p,C), n definedby ∞ (C−mxt+ytm)p= ∑P (m,x,y,p,C)tn, n n=0 wherem≥1isanintegerandtheotherparametersareunrestrictedingeneral(cf. [7],[10]). SomespecialcasesofthegeneralizedHumbertpolynomials,P (m,x,y,p,C), n canbegivenasfollows(cf.[12]): P (cid:0)2,x,1,−1,1(cid:1) = P (x) Legendre(1784), n 2 n P (2,x,1,−ν,1) = Cν(x) Geganbauer(1874), n n P (cid:0)3,x,1,−1,1(cid:1) = P (x) Pincherle(1890), n 2 n P (m,x,1,−ν,1) = hν (x) Humbert(1921). n n,m 6 G.Ozdemir,Y.SimsekandG.V.Milovanovic´ 9◦ The Fibonacci type polynomials in two variables (x,y)(cid:55)→G (x,y;k,m,n) j hasbeenrecentlydefinedbyOzdemirandSimsek[21]bythefollowinggenerating function ∞ 1 H(t;x,y;k,m,n)= ∑G (x,y;k,m,n)tj= , (1.16) j 1−xkt−ymtm+n j=0 where k,m,n∈N . An explicit formula for the polynomials G (x,y;k,m,n), j = 0 j 0,1,...,canbedoneinthefollowingform[21] (cid:104) j (cid:105) m+n (cid:18)j−c(m+n−1)(cid:19) G (x,y;k,m,n)= ∑ ymcxjk−mck−nck, j c c=0 where[a]isthelargestinteger≤a. Inthispaperwegivesomenewidentitiesforthepreviousclassesofpolyno- mialsandinvestigatesomenewpropertiesofthesepolynomials.Moreover,byusing theirgeneratingfunctions,wegivesomeapplicationswhichareassociatedwiththe Fibonaccitypepolynomialsofhigherorderintwovariables. Thepaperisorganizedasfollows.Fibonaccitypepolynomialsofhigherorder intwovariablesandanewfamilyofspecialpolynomials(x,y)(cid:55)→G (x,y;k,m,n) d areintroducedandstudiedinSections2and3,respectively.Specialcasesofpoly- nomialsG (x,y;k,m,n)areinvestigatedinSection4.Finally,Section5isdevoted d toaclassofpolynomialsandcorrespondingnumbers,obtainedbyamodificationof thegeneratingfunctionofHumbert’spolynomials. 2. Fibonaccitypepolynomialsofhigherorderintwovariables In this section we give a new generalization of the Fibonacci type polynomials in twovariables. Definition2.1. TwovariableFibonaccitypepolynomialsofhigherorder(x,y)(cid:55)→ G(h)(x,y;k,m,n)aredefinedbythefollowinggeneratingfunction j ∞ 1 ∑G(h)(x,y;k,m,n)tj= (2.1) j (1−xkt−ymtn+m)h j=0 wherehisapositiveinteger. Observethat G(1)(x,y;k,m,n)=G (x,y;k,m,n). j j We give now a computation formula of two variable Fibonacci type polyno- mialsofhigherorderhinthefollowingstatement. Theorem2.2. Wehave j G(h1+h2)(x,y;k,m,n)= ∑G(h1)(x,y;k,m,n)G(h2)(x,y;k,m,n). (2.2) j (cid:96) j−(cid:96) (cid:96)=0 GeneratingFunctionsforSpecialPolynomialsandNumbers 7 Proof. Settingh=h +h into(2.1),westartwith 1 2 ∞ 1 1 ∑G(h1+h2)(x,y;k,m,n)tj= · , j (1−xkt−ymtn+m)h1 (1−xkt−ymtn+m)h2 j=0 andthen,usingagain(2.1),weget ∞ ∞ ∞ ∑G(h1+h2)(x,y;k,m,n)tj= ∑G(h1)(x,y;k,m,n)tj ∑G(h2)(x,y;k,m,n)tj. j j j j=0 j=0 j=0 Now,byusingtheCauchyproductintheright-handsideoftheaboveequation,we obtain ∞ ∞ j ∑G(h1+h2)(x,y;k,m,n)tj= ∑ ∑G(h1)(x,y;k,m,n)G(h2)(x,y;k,m,n)tj. j (cid:96) j−(cid:96) j=0 j=0(cid:96)=0 Finally,comparingthecoefficientsoftj onbothsidesinthepreviousequality,we arriveatthedesiredresult(2.2). (cid:3) Remark 2.3. Setting h =h =1 in (2.2), we obtain the following formula for 1 2 computingtwovariableFibonaccitypepolynomialsofthesecondorder, j G(2)(x,y;k,m,n)= ∑G (x,y;k,m,n)G (x,y;k,m,n). j (cid:96) j−(cid:96) (cid:96)=0 Ifwetakex:=ax,y=−1,k=1,m=1,n=a−1,(2.1)reducesto ∞ 1 ∑G(h)(ax,−1;1,1,a−1)tj = j (1−axt+ta)h j=0 ∞ = ∑Πh (x)tj. j,a j=0 Comparingthecoefficientsoftjonbothsidesoftheaboveequality,weobtain thefollowingresult: Corollary 2.4. A relation between two variable Fibonacci type polynomials of higherorderG(h)(x,y;k,m,n)andHumbertpolynomialsΠh (x)isgivenby j n,m G(h)(ax,−1;1,1,a−1)=Πh (x). j j,a 3. SpecialpolynomialsincludingtwovariableFibonaccitype polynomialsandBernoulliandEulertypepolynomials In this section, in order to introduce a new family of polynomials, we modify and unifythegeneratingfunctionsoftheFibonaccitypepolynomialsintwovariables. Byusingthesegeneratingfunctions,wederivesomerelationsandidentitiesinclud- ing the Apostol-Bernoulli numbers, the Bernoulli type polynomials, the Humbert polynomialsandtheGenocchipolynomials.Theserelationsandidentitiesalsoin- cludetheFibonaccitypepolynomialsintwovariables. 8 G.Ozdemir,Y.SimsekandG.V.Milovanovic´ Now, we introduce the generating function for these new special polynomi- alsintwovariables(x,y)(cid:55)→G (x,y;k,m,n),d≥0,withthethreefreeparameters d k,m,n. Definition 3.1. The polynomials G (x,y;k,m,n) are defined by means of the fol- d lowinggeneratingfunction 1−xk−ym F(z;x,y;k,m,n) = 1−xkez−ymez(m+n) ∞ G (x,y;k,m,n)(cid:18) z (cid:19)d = ∑ d . (3.1) d! 1−xk−ym d=0 ArecurrencerelationforthepolynomialsG (x,y;k,m,n)canbeproved. d Theorem3.2. LetG (x,y;k,m,n)=1andd beapositiveinteger.Thenwehave 0 G (x,y;k,m,n) = xk∑d (cid:18)d(cid:19)G (x,y;k,m,n)(cid:0)1−xk−ym(cid:1)d−j d j j j=0 +ym∑d (cid:18)d(cid:19)G (x,y;k,m,n)(m+n)d−j(cid:0)1−xk−ym(cid:1)d−j. j j j=0 Proof. Byapplyingtheumbralcalculusmethodsto(3.1),weget ∞ zd 1−xk−ym= ∑G (x,y;k,m,n) d (1−xk−ym)dd! d=0 −xk ∑∞ (cid:0)G(x,y;k,m,n)+1−xk−ym(cid:1)d zd (1−xk−ym)dd! d=0 −ym ∑∞ (cid:0)G(x,y;k,m,n)+(m+n)(cid:0)1−xk−ym(cid:1)(cid:1)d zd , (1−xk−ym)dd! d=0 withtheusualconventionofreplacingGd(x,y;k,m,n)byG (x,y;k,m,n).Compar- d ingthecoefficientsofzd onthebothsidesofthepreviousequality,wearriveatthe desiredresult. (cid:3) Afewfirstpolynomialsare G (x,y;k,m,n)=1, G (x,y;k,m,n)=xk+(m+n)ym, 0 1 G (x,y;k,m,n)=[xk+(m+n)ym]2−(m+n−1)2xkym+xk+(m+n)2ym, 2 etc. 3.1. Relationsbetweenthepolynomialsandnumbers Here, we consider some special cases of the polynomials G (x,y;k,m,n). By us- d ing the generating function from (3.1), we derive some new identities and rela- tions,whichincludethepolynomialsG (x,y;k,m,n),theApostol-Bernoulliandthe d Apostol-Euler polynomials and numbers, as well as the classical Bernoulli, Euler andGenocchipolynomialsandnumbers. GeneratingFunctionsforSpecialPolynomialsandNumbers 9 Theorem 3.3. Let d ≥1. The polynomials G (x,y;k,m,n), d ≥1, are connected d withtheApostol-BernoullinumbersB (λ)inthefollowingway d (cid:0)1−xk−y(cid:1)d G (x,y;k,1,0)=− B (cid:0)xk+y(cid:1), d≥1. (3.2) d−1 d d Proof. First,accordingto(3.1)and(1.2),wehavethefollowingrelation 1−xk−y F(z;x,y;k,1,0)=− F (0,z;xk+y), AB z i.e., ∑∞ Gd(x,y;k,1,0)zd =−1−xk−y ∑∞ B (cid:0)xk+y(cid:1)zd, (1−xk−y)d d! z d d! d=0 d=0 wherewealsoused(1.3).However,since z ∞ G (x,y;k,1,0) zd ∞ (d+1)G (x,y;k,1,0) zd+1 ∑ d · = ∑ d · 1−xk−y (1−xk−y)d d! (1−xk−y)d+1 (d+1)! d=0 d=0 ∞ dG (x,y;k,1,0) zd = ∑ d−1 · , (1−xk−y)d d! d=1 wehave ∑∞ dGd−1(x,y;k,1,0)·zd =−∑∞ B (cid:0)xk+y(cid:1)zd, (3.3) (1−xk−y)d d! d d! d=1 d=1 becauseB (λ)=0. 0 Comparingthecoefficientsofzd/d!onbothsidesin(3.3),weobtain(3.2). (cid:3) ByusingtheApostol-Bernoullinumbersandtheequality(3.2)wegetanother computationformulaforthepolynomialsG (x,y;k,m,n).Thus, d G (x,y;k,1,0)=−(cid:0)1−xk−y(cid:1)B (cid:0)xk+y(cid:1)=1, 0 1 (cid:0)1−xk−y(cid:1)2 G (x,y;k,1,0)=− B (cid:0)xk+y(cid:1)=xk+y, 1 2 2 (cid:0)1−xk−y(cid:1)3 G (x,y;k,1,0)=− B (cid:0)xk+y(cid:1)=x2k+2xky+xk+y2+y, 2 3 3 (cid:0)1−xk−y(cid:1)4 G (x,y;k,1,0)=− B (cid:0)xk+y(cid:1)=(cid:0)xk+y(cid:1)(cid:2)(cid:0)xk+y(cid:1)2+4(cid:0)xk+y(cid:1)+1(cid:3), 3 4 4 (cid:0)1−xk−y(cid:1)5 G (x,y;k,1,0)=− B (cid:0)xk+y(cid:1) 4 5 5 =(cid:0)xk+y(cid:1)(cid:2)(cid:0)xk+y(cid:1)3+11(cid:0)xk+y(cid:1)2+11(cid:0)xk+y(cid:1)+1(cid:3), etc. Theorem3.4. Letd≥0.TherelationbetweenthepolynomialsG (x,y;k,m,n)and d theApostol-BernoullipolynomialsB (x,λ)isgivenby d B (cid:0)x,xk(cid:1)=−dd∑−1(cid:18)d−1(cid:19) xd−1−j G (x,0;k,m,n). (3.4) d j (1−xk)j+1 j j=0 10 G.Ozdemir,Y.SimsekandG.V.Milovanovic´ Proof. Startingwith(1.6)and(3.1)fory=0m(cid:54)=0,weconcludethat zexzF(z;x,0;k,m,n)=zexz 1−xk =(cid:0)xk−1(cid:1)F (x,z;xk), (3.5) 1−xkez AE i.e., z∑∞ (xz)d ∑∞ Gd(x,0;k,m,n)zd =−∑∞ B (cid:0)x,xk(cid:1)zd, d! (1−xk)d+1 d! d d! d=0 d=0 d=0 afterreplacingbythecorrespondingseriesrepresentations.Now,usingtheCauchy productontheleft-handsideoftheaboveequality,weobtain ∑∞ ∑d (cid:18)d(cid:19)xd−jGj(x,0;k,m,n)zd+1 =−∑∞ B (cid:0)x,xk(cid:1)zd, j (1−xk)j+1 d! d d! d=0j=0 d=0 i.e.,(3.4). (cid:3) Remark 3.5. By using (3.5), the equality (3.4) can be also given in the following form B (cid:0)x,xk(cid:1)=−∑d (cid:18)d(cid:19)xd−j jGj−1(x,0;k,m,n). d j=1 j (cid:0)1−xk(cid:1)j Theorem3.6. TheEulerpolynomialsE (x)canbeexpressedintermsofthepoly- d nomialsG (x,y;k,m,n)as d d (cid:18)d(cid:19) G (−1,0;1,m,n) E (x)= ∑ xd−j j . (3.6) d j 2j j=0 Proof. AsintheproofofTheorem3.4,weassumethatm(cid:54)=0andstartwithaspecial caseofthegeneratingfunctionin(3.1),withx=−1,y=0andk=1,i.e., F(z;−1,0;1,m,n)=F (0,t;1), AE Then,bythegeneratingfunctionoftheEulerpolynomialsE (x)givenby(1.8)(for d h=1),weconcludethat exzF(z;−1,0;1,m,n)=F (x,z;1). Eh i.e., ∞ (xz)d ∞ G (−1,0;1,m,n)zd ∞ zd ∑ ∑ d = ∑E (x) d! 2d d! d d! d=0 d=0 d=0 or ∞ d (cid:18)d(cid:19) G (−1,0;1,m,n)zd ∞ zd ∑ ∑ xd−j j = ∑E (x) , j 2j d! d d! d=0j=0 d=0 fromwhichweobtain(3.6). (cid:3) Theorem3.7. TherelationbetweenthepolynomialsG (x,y;k,m,n)andtheGenoc- d chipolynomialsG (x)isgivenby d d−1(cid:18)d−1(cid:19) G (−1,0;1,m,n) G (x)=d ∑ xd−1−j j . (3.7) d j 2j j=0

Description:
polynomials and numbers of the Bernoulli, Euler, Apostol-Bernoulli, Apostol- The special polynomials and numbers play an important role in many
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.