ebook img

Generalized Eilenberg Theorem I: Local Varieties of Languages PDF

0.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Generalized Eilenberg Theorem I: Local Varieties of Languages

Generalized Eilenberg Theorem I: Local Varieties of Languages Jiˇr´ıAda´mek1,StefanMilius2,RobertS.R.Myers1andHenningUrbat1 1 Institutfu¨rTheoretischeInformatik 5 TechnischeUniversita¨tBraunschweig,Germany 1 2 Lehrstuhlfu¨rTheoretischeInformatik 0 Friedrich-Alexander-Universita¨tErlangen-Nu¨rnberg,Germany 2 n a DedicatedtoManuelaSobral. J 2 1 Abstract. Weinvestigatethedualitybetweenalgebraicandcoalgebraicrecog- nitionoflanguagestoderiveageneralizationofthelocalversionofEilenberg’s ] theorem.Thistheoremstatesthatthelatticeofallbooleanalgebrasofregularlan- L guagesover analphabetΣ closedunderderivativesisisomorphictothelattice F ofallpseudovarietiesofΣ-generatedmonoids. Byapplyingourmethodtodif- . s ferentcategories,weobtainthreerelatedresults:one,duetoGehrke,Grigorieff c andPin,weakensbooleanalgebrastodistributivelattices,oneweakensthemto [ join-semilattices,andthelastoneconsidersvectorspacesoverZ2. 1 v 4 1 Introduction 3 8 Regularlanguagesarepreciselythebehavioursoffiniteautomata.Amachine-indepen- 2 dentcharacterizationofregularityisthestartingpointofalgebraicautomatatheory(see 0 e.g.[16]):onedefinesrecognitionviapreimagesofmonoidmorphismsf ∶ Σ∗ → M, . 1 where M is a finite monoid,and everyregularlanguageis recognizedin this way by 0 itssyntacticmonoid.Thissuggeststoinvestigatehowoperationsonregularlanguages 5 1 relate to operationson monoids. Recall that a pseudovariety of monoids is a class of : finite monoidsclosed underfinite products,submonoidsandquotients(homomorphic v images),andavarietyofregularlanguagesisaclassofregularlanguagesclosedunder i X thebooleanoperations(union,intersectionandcomplement),leftandrightderivatives1 r and preimages of monoid morphisms Σ∗ → Γ∗. Eilenberg’s variety theorem [9], a a cornerstoneofautomatatheory,establishesalatticeisomorphism varietiesofregularlanguages ≅ pseudovarietiesofmonoids. Numerous variations of this correspondence are known, e.g. weakening the closure propertiesinthedefinitionofavariety[15,18],orreplacingregularlanguagesbyfor- mal powerseries [20]. Recently Gehrke,GrigorieffandPin [11, 12] proveda “local” version of Eilenberg’stheorem: for every fixed alphabet Σ, there is a lattice isomor- phismbetweenlocalvarietiesofregularlanguages(sets ofregularlanguagesoverΣ 1Theleft and right derivatives of a language L ⊆ Σ∗ arew−1L = {u ∈ Σ∗ ∶ wu ∈ L} and Lw−1={u∈Σ∗∶uw∈L}forw∈Σ∗,respectively. 2 J.Ada´mek,S.Milius,R.S.R.MyersandH.Urbat closedunderbooleanoperationsandderivatives)andlocalpseudovarietiesofmonoids (setsofΣ-generatedfinitemonoidsclosedunderquotientsandsubdirectproducts).At theheartofthisresultliestheuseofStonedualitytorelatethebooleanalgebraofreg- ularlanguagesoverΣ,equippedwithleftandrightderivatives,tothefreeΣ-generated profinitemonoid. InthispaperwegeneralizethelocalEilenbergtheoremtothelevelofanabstractdu- ality.Ourapproachstartswiththeobservationthatallconceptsinvolvedinthistheorem areinherentlycategorical: (1) The boolean algebra Reg of all regular languages over Σ naturally carries the Σ structure of a deterministic automaton whose transitions L Ð→a a−1L for a ∈ Σ are given by left derivation and whose final states are the languages containing the empty word. In other words, Reg is a coalgebrafor the functorT Q = 2× Σ Σ QΣ on the categoryof boolean algebras, where 2 = {0,1} is the two-chain. The coalgebraReg canbecapturedabstractlyastherationalfixpoint̺T ofT ,i.e., Σ Σ Σ theterminallocallyfiniteT -coalgebra[14]. Σ (2) Monoids are precisely the monoid objects in the category of sets, viewed as a monoidalcategoryw.r.t.thecartesianproduct. (3) The categories of boolean algebras and sets occurring in (1) and (2) are locally finitevarietiesofalgebras(thatis, theirfinitelygeneratedalgebrasarefinite),and thefullsubcategoriesoffinitebooleanalgebrasandfinitesetsareduallyequivalent viaStoneduality. Inspiredby(3),wecalltwolocallyfinitevarietiesC undD of(possiblyordered)alge- braspredualiftherespectivefullsubcategoriesC andD offinitealgebrasaredually f f equivalent.OuraimistoprovealocalEilenbergtheoremforanabstractpairofpredual varietiesC andD,theclassicalcasebeingcoveredbytakingC =booleanalgebrasand D =sets.Inthissettingdeterministicautomataaremodeledbothascoalgebrasforthe functor T ∶C →C, T Q=2×QΣ, Σ Σ andasalgebrasforthefunctor LΣ ∶D→D, LΣA=1+∐A, Σ where2isatwo-elementalgebrainCand1isitsdualfinitealgebrainD.Thesefunctors arepredualinthesensethattheirrestrictionsT ∶C →C andL ∶D →D tofinite Σ f f Σ f f algebrasare dual, and therefore the categoriesof finite T -coalgebrasand finite L - Σ Σ algebrasareduallyequivalent.AsafirstapproximationtothelocalEilenbergtheorem, weconsidertherationalfixpoint̺T forT –whichisalwayscarriedbytheautomaton Σ Σ Reg ofregularlanguages–andtheinitialalgebraµL forL andestablishalattice Σ Σ Σ isomorphism subcoalgebrasof̺T ≅ idealcompletionoftheposetoffinitequotientalgebrasofµL . Σ Σ Thisis“almost”thedesiredgenerallocalEilenbergtheorem.Fortheclassicalcase(C = booleanalgebrasand D = sets) one has ̺T = Reg and µL = Σ∗, and the above Σ Σ Σ GeneralizedEilenbergTheoremI:LocalVarietiesofLanguages 3 isomorphismstatesthatthebooleansubalgebrasofReg closedunderleftderivatives Σ correspondtosetsoffinitequotientalgebrasofΣ∗closedunderquotientsandsubdirect products.Whatismissingistheclosureunderright derivativesonthecoalgebraside, andquotientalgebrasofΣ∗whicharemonoidsonthealgebraside. The final step is to provethatthe aboveisomorphismrestricts to one between lo- calvarieties of regularlanguagesin C (i.e., subcoalgebrasof ̺T closed underright Σ derivatives)andlocalpseudovarietiesofD-monoids.HereaD-monoidisamonoidob- jectinthemonoidalcategory(D,⊗,Ψ1)where⊗isthetensorproductofalgebrasand Ψ1 is the free algebraon onegenerator.In moreelementaryterms, a D-monoidis an algebraAin D equippedwitha “bilinear”monoidmultiplicationA×A Ð→○ A, which meansthatthemapsa○−and−○aareD-morphismsforalla ∈ A. Forexample,D- monoidsinD =sets,posets,join-semilatticesandvectorspacesoverZ2 aremonoids, orderedmonoids,idempotentsemiringsandZ2-algebras(inthesenseofalgebrasover afield),respectively.Inalltheseexamplesthemonoidalcategory(D,⊗,Ψ1)isclosed: thesetD(A,B)ofhomomorphismsbetweentwoalgebrasAandB isanalgebrainD withthepointwisealgebraicstructure.Ourmainresultisthe GeneralLocalEilenberg Theorem.LetC andD be preduallocallyfinite varieties ofalgebras,wherethealgebrasinD arepossiblyordered.SupposefurtherthatD is monoidalclosedw.r.t.tensorproduct,epimorphismsinDaresurjective,andthefree algebrainD ononegeneratorisdualtoatwo-elementalgebrainC.Thenthereisa latticeisomorphism localvarietiesofregularlanguagesinC ≅ localpseudovarietiesofD-monoids. ByapplyingthistoStoneduality(C =booleanalgebrasandD=sets)werecoverthe “classical”localEilenbergtheorem.Birkhoffduality(C =distributivelatticesandD = posets)givesanotherresultofGehrkeet.al,namelyalatticeisomorphismbetweenlocal latticevarietiesofregularlanguages(subsetsofReg closedunderunion,intersection Σ and derivatives)and local pseudovarietiesof orderedmonoids. Finally,by taking C = D =join-semilatticesandC = D =vectorspacesoverZ2,respectively,weobtaintwo newlocalEilenbergtheorems.Thefirstoneestablishesalatticeisomorphismbetween local semilattice varieties of regular languages (subsets of Reg closed under union Σ andderivatives)andlocalpseudovarietiesofidempotentsemirings,andthesecondone givesan isomorphismbetween locallinear varieties of regularlanguages(subsets of Reg closedundersymmetricdifferenceandderivatives)andlocalpseudovarietiesof Σ Z2-algebras. AsaconsequenceoftheGeneralLocalEilenbergTheoremwealsogainageneral- izedviewofprofinitemonoids.ThedualequivalencebetweenC andD liftstoadual f f ˆ equivalencebetweenC andacategoryDarisingasaprofinitecompletionofD .Inthe f ˆ classical case we have C = booleanalgebras,D = sets and D = Stonespaces, andthe ˆ ˆ dualequivalencebetweenC andDisgivenbyStoneduality.ThentheD-objectdualto therationalfixpoint̺T ∈C canbeequippedwithamonoidstructurethatmakesitthe Σ freeprofiniteD-monoidonΣ. 4 J.Ada´mek,S.Milius,R.S.R.MyersandH.Urbat Theorem.UndertheassumptionsoftheGeneralLocalEilenbergTheorem,thefree profiniteD-monoidonΣ isdualtotherationalfixpoint̺T . Σ ThisextendsthecorrespondingresultsofGehrke,GrigorieffandPin[11]forD =sets andD=posets. Thepresentpaperisarevisedandextendedversionoftheconferencepaper[2],provid- ingfullproofsandmoredetailedexamples.Incomparisontoloc.cit.weworkwitha slightlymodifiedcategoricalframeworkinordertosimplifythepresentation,seeSec- tion6. Relatedwork. OurpaperisinspiredbytheworkofGehrke,GrigorieffandPin[11,12] whoshowedthatthealgebraicoperationofthefreeprofinitemonoidonΣ dualizesto thederivativeoperationsonthebooleanalgebraofregularlanguages(andsimilarlyfor the free orderedprofinite monoid on Σ). Previously,the duality between the boolean algebraofregularlanguagesandtheStonespaceofprofinitewordsappeared(implic- itly)inworkbyAlmeida[5]andwasformulatedbyPippenger[17]intermsofStone duality. Acategoricalapproachtothedualitytheoryofregularlanguageshasbeensuggested by Rhodesand Steinberg[21]. They introducethe notionof a booleanbialgebra,and provethe equivalenceof bialgebrasandprofinite semigroups.The precise connection totheirworkisyettobeinvestigated. Another related work is Pola´k [18] and Reutenauer [20]. They consider what we treat as the example of join-semilattices and vector spaces, respectively, and obtain a (non-local)Eilenbergtheoremforthese cases. To the bestof ourknowledgethe local versionwe provedoesnotfollow fromthe globalversion,and so we believethatour resultisnew. Theoriginofalltheaboveworkis, ofcourse,Eilenberg’stheorem[9].LaterRei- terman[19]provedanothercharacterizationofpseudovarietiesofmonoidsinthespirit ofBirkhoff’sclassicalvarietytheorem.Reiterman’stheoremstatesthatanypseudova- rietyofmonoidscanbecharacterizedbyprofiniteequations(i.e.,pairsofelementsofa freeprofinitemonoid).Wedonottreatprofiniteequationsinthepresentpaper. 2 The Rational Fixpoint Theaimof thissection istorecalltherationalfixpointofa functor,whichprovidesa anabstractcoalgebraicviewofthesetofregularlanguages.Asaprerequisite,weneed acategoricalnotionof“finiteautomaton”,andsowewillworkwithcategorieswhere enough“finite”objectsexist–viz.locallyfinitelypresentablecategories[4]. Definition2.1. (a) An object X of a category C is finitely presentable if the hom- functorC(X,−)∶C →Setisfinitary(i.e.,preservesfilteredcolimits).LetC denote f thefullsubcategoryofallfinitelypresentableobjectsofC. (b) C islocallyfinitelypresentableifitiscocomplete,C issmalluptoisomorphism f andeveryobjectofC isafilteredcolimitoffinitelypresentableobjects. GeneralizedEilenbergTheoremI:LocalVarietiesofLanguages 5 Example2.2. Let Γ be a finitary signature, that is, a set of operation symbols with finitearity. (1) DenotebyAlgΓ thecategoryofΓ-algebrasandΓ-homomorphisms.Avarietyof algebras is a full subcategory of AlgΓ closed under products, subalgebras (rep- resentedbyinjectivehomomorphisms)andhomomorphicimages(representedby surjective homomorphisms).Equivalently,by Birkhoff’stheorem [7], varieties of algebras are precisely the classes of algebras definable by equations of the form s = t, wheres andt areΓ-terms.Everyvarietyofalgebrasislocallyfinitelypre- sentable[4,Corollary3.7]. (2) Similarly, let Alg Γ be the category of ordered Γ-algebras. Its objects are Γ- ≤ algebrascarryingaposetstructureforwhicheveryΓ-operationismonotone,and its morphisms are monotone Γ-homomorphisms. A variety of ordered algebras is a full subcategory of Alg Γ closed under products, subalgebras and homo- ≤ morphic images. Here subalgebras are represented by embeddings (injective Γ- homomorphismsthat are both monotoneand order-reflecting),and homomorphic imagesarerepresentedbysurjectiveΣ-homomorphismsthataremonotonebutnot necessarilyorder-reflecting. Bloom[8]provedanorderedanalogueofBirkhoff’stheorem:varietiesofordered algebrasarepreciselytheclassesoforderedalgebrasdefinablebyinequalitiess≤t betweenΓ-terms.Fromthisitiseasytoseethateveryvarietyoforderedalgebrasis finitarymonadicoverthelocallyfinitelypresentablecategoryofposets,andhence locallyfinitelypresentable[4,TheoremandRemark2.78]. Inourapplicationswewillworkwiththevarietiesinthetablebelow.Observethatall these varietiesare locally finite, that is, their finitely presentableobjects are precisely thefinitealgebras. C objects morphisms Set sets functions BA booleanalgebras booleanmorphisms DL01 distributivelatticeswith0and1 latticemorphismspreserving0and1 JSL0 join-semilatticeswith0 semilatticemorphismspreserving0 VectZ2 vectorspacesoverthefieldZ2 linearmaps Pos partiallyorderedsets monotonefunctions Remark2.3. For the rest of this paper the term “variety” refers to both varieties of algebrasandvarietiesoforderedalgebras. Notation2.4. Fix a locally finitely presentable categoryC and a finitary endofunctor T ∶C →C. Definition2.5. A T-coalgebra is a pair (Q,γ) of a C-object Q and a C-morphism γ ∶Q→TQ.Ahomomorphism h∶(Q,γ)→(Q′,γ′) 6 J.Ada´mek,S.Milius,R.S.R.MyersandH.Urbat of T-coalgebras is a C-morphism h ∶ Q → Q′ with γ′ ⋅h = Th⋅γ. We denote by CoalgT thecategoryofallT-coalgebrasandtheirhomomorphisms,andbyCoalg T f thefullsubcategoryofT-coalgebras(Q,γ)withfinitelypresentablecarrierQ(inthe casewhereC isalocallyfinitevariety,thesearepreciselythefinitecoalgebras). Example2.6. GivenafinitealphabetΣ andanobject2inC,theendofunctor T =2×IdΣ =2×Id×Id×...×Id Σ ofC isfinitarysinceinanylocallyfinitelypresentablecategoryfilteredcolimitscom- mutewithfiniteproducts.IfC isalocallyfinitevarietyand2isatwo-elementalgebra inC,thenT -coalgebrasaredeterministicautomata,seee.g.[22].Indeed,bytheuni- Σ versalpropertyoftheproduct,togiveacoalgebraQÐ→γ T Q=2×QΣmeansprecisely Σ to give an algebra Q (of states), morphismsγ ∶ Q → Q for every a ∈ Σ (represent- a inga-transitions)anda morphismf ∶ Q → 2(representingfinalstates). Herearetwo specialcases: (a) Theusualconceptofadeterministicautomaton(withoutinitialstates)iscaptured as a coalgebraforT where C = Set and 2 = {0,1}.An importantexampleof a Σ T -coalgebraistheautomatonReg ofregularlanguages.Itsstatesaretheregular Σ Σ languagesoverΣ,itstransitionsare γ (L)=a−1L forallL∈Reg anda∈Σ, a Σ andthefinalstatesarepreciselythelanguagescontainingtheemptywordε. (b) Analogously,considerT asanendofunctorofC = BAwith2 = {0,1}(thetwo- Σ element boolean algebra). A coalgebra for T is a deterministic automaton with Σ a booleanalgebrastructureonthe state set Q. Moreover,the transitionmapsγ ∶ a Q → Q are boolean homomorphisms, and the final states (given by the inverse image of 1 under f ∶ Q → 2) form an ultrafilter. The above automaton Reg is Σ alsoaT -coalgebrainBA:thesetofregularlanguagesisabooleanalgebraw.r.t. Σ theusualset-theoreticoperations,leftderivativespreservetheseoperations,andthe languagescontainingεformaprincipalultrafilter. Definition2.7. (a) A coalgebra is called locally finitely presentable if it is a filtered colimitofcoalgebraswithfinitelypresentablecarrier.ThefullsubcategoryofCoalgT ofalllocallyfinitelypresentablecoalgebrasisdenotedCoalg T. lfp (b) TherationalfixpointofT isthefilteredcolimit r∶̺T →T(̺T) of all coalgebras with finitely presentable carrier, i.e., the colimit of the diagram Coalg T ↣CoalgT. f Theterm“rationalfixpoint”isjustifiedbyitem(a)inthetheorembelow. Theorem2.8 (see[14]). (a) risanisomorphism. GeneralizedEilenbergTheoremI:LocalVarietiesofLanguages 7 (b) ̺T istheterminallocallyfinitelypresentableT-coalgebra,i.e.,everylocallyfinitely presentableT-coalgebrahasauniquecoalgebrahomomorphisminto̺T. Example2.9. TherationalfixpointofT ∶Set→Setistheautomaton̺T =Reg of Σ Σ Σ Example2.6(a),see [3].ForanylocallyfinitelypresentableT -coalgebra(Q,γ),the Σ uniquehomomorphism(Q,γ)→̺T mapseachstateq∈Qtoitsacceptedlanguage Σ Lq ={a1...an∈Σ∗ ∶ qÐa→1 q1Ða→2 q2→⋯Ða→n qnforsomefinalstateqn}. Thisexamplecanbegeneralized: Theorem2.10. SupposethatCisalocallyfinitevarietyandT liftsafinitaryfunctorT0 onSet,thatis,thefollowingdiagram(whereU denotestheforgetfulfunctor)commutes: C T //C U U (cid:15)(cid:15) (cid:15)(cid:15) Set //Set T0 ThenthefunctorU∶CoalgT →CoalgT0givenby QÐ→γ TQ ↦ UQÐUÐ→γ UTQ=T0UQ preservestherationalfixpoint,i.e., U(̺T)≅̺T0. Proof. ThefunctorUisfinitary(sincefilteredcolimitsofT-coalgebrasareformedon the level of C and hence on the level of Set) and restricts to finite coalgebras, so we haveacommutativesquare CoalgT U //CoalgT0 OO OO I I0 OO OO CoalgfT V // CoalgfT0 whereI andI0 aretheinclusionfunctors.WewillprovebelowthatViscofinal,from whichtheclaimfollows: U(̺T)=U(colimI) def.̺T ≅colim(UI) Ufinitary ≅colim(I0V) UI =I0V ≅colim(I0) Vcofinal =̺T0 def.̺T0 ThecofinalityofVamountstoprovingthat 8 J.Ada´mek,S.Milius,R.S.R.MyersandH.Urbat (1) for every finite T0-coalgebra (Q,γ) there exists a T0-coalgebra homomorphism (Q,γ)→V(Q′,γ′)forsomefiniteT-coalgebra(Q′,γ′),and (2) anytwosuchcoalgebrahomomorphismsareconnectedbyazig-zag. Proofof(1).LetΦ ∶ Set → C betheleftadjointoftheforgetfulfunctorU ∶ C → Set, anddenotetheunitandcounitoftheadjunctionbyηandε,respectively.Givenafinite T0-coalgebraQÐ→γ T0Qformthe“free”T-coalgebra ΦQÐΦ→γ ΦT0QÐΦÐTÐ0ηÐQ→ΦT0UΦQ=ΦUTΦQÐεÐTΦÐQ→TΦQ. NotethatΦQisfinitebecauseC islocallyfinite.Then ηQ∶(Q,γ)→V(ΦQ,εTΦQ⋅ΦT0ηQ⋅Φγ) isacoalgebrahomomorphism.Indeed,thediagrambelowcommutesbythenaturality ofηandthetriangleidentityUε⋅ηU =id: Q γ // T0Q ηT0Q vv♥♥♥T♥0♥η♥Q♥♥♥♥♥♥♥ ηQ T0UΦQ T0ηQ (cid:15)(cid:15) ww uu❧❧❧η❧T❧0❧U❧Φ❧Q❧❧❧❧❧❧ PPPPPPPPPPPPPPPPPPPPPPPP (cid:15)(cid:15) UΦQ //UΦT0Q // UΦT0UΦQ=UΦUTΦQ //UTΦQ=T0UΦQ UΦγ UΦT0ηQ UεTΦQ Proofof(2).Givenanycoalgebrahomomorphismh∶(Q,γ)→V(Q′,γ′)thereexistsa uniqueD-morphismh∶ΦQ→Q′withUh⋅η =hbytheuniversalpropertyofη.We Q claimthathisacoalgebrahomomorphism h∶(ΦQ,εTΦQ⋅ΦT0ηQ⋅Φγ)→(Q′,γ′). Indeed,thelowersquareinthediagrambelowcommuteswhenprecomposedwithη , Q fromwhichtheequationγ′⋅h=Th○εTΦQ⋅ΦT0ηQ⋅Φγ follows. Q γ //T0Q ηQ T0ηQ (cid:15)(cid:15) (cid:15)(cid:15) h UΦQ // T0UΦQ T0h U(εTΦQ⋅ΦT0ηQ⋅Φγ) Uh T0Uh $$ (cid:15)(cid:15) (cid:15)(cid:15) zz UQ′ //T0UQ′ Uγ′ Now giventwo coalgebrahomomorphismsh ∶ (Q,γ) → V(Q′,γ′) and k ∶ (Q,γ) → V(Q′′,γ′′),thedesiredzig-zaginCoalg T is Q′oo h ΦQ k //Q′′. ⊓⊔ f GeneralizedEilenbergTheoremI:LocalVarietiesofLanguages 9 Corollary2.11. Let C be a locally finite variety with a two-element algebra 2. Then the rational fixpoint of T = 2×IdΣ ∶ C → C is carried by the automaton Reg of Σ Σ Example2.6(a).For any locally finitelypresentableT -coalgebra(Q,γ), the unique Σ homomorphism(Q,γ)→̺T mapseachstateq∈Qtoitsacceptedlanguage. Σ Proof. ApplyTheorem2.10to T = TΣ andT0 = {0,1}×IdΣ.Since ̺T0 = RegΣ by Example2.9,theclaimfollows. ⊓⊔ NextwewillshowthatthelocallyfinitelypresentableT-coalgebrasariseasa“free completion”ofthecoalgebraswithfinitelypresentablecarrier(Theorem2.14below). Remark2.12. (a) Recall that the free completion under filtered colimits of a small category A is a full embedding A ↪ IndA such that IndA has filtered colimits andeveryfunctorF ∶A→BintoacategoryB withfilteredcolimitshasafinitary extensionF ∶IndA→B,uniqueuptonaturalisomorphim: A // //IndA ❊❊❊F❊❊❊❊❊❊"" (cid:15)(cid:15)✤✤✤F B This determines IndA up to equivalence. If A has finite colimits then IndA is locally finitely presentable and (IndA) ≅ A. Conversely, every locally finitely f presentablecategoryC arisesinthisway:C ≅Ind(C ). f (b) IfAisajoin-semilatticethenIndAisitsidealcompletion,seeRemark3.15. Lemma2.13. LetBbeacocompletecategoryandJ ∶A↣Bbeasmallfullsubcate- goryoffinitelypresentableobjectsclosedunderfinitecolimits.Thentheuniquefinitary extensionJ∗∶Ind(A)→Bformsafullcoreflectivesubcategory. Proof. By the theoreminSectionVI.1.8ofJohnstone[13],we knowthatJ∗ isa full embeddingsothatInd(A)canbeidentifiedwiththefullsubcategoryofBgivenbyall filteredcolimitsofobjectsfromA.Wewillshowthatthisfullsubcategoryiscoreflec- tive.LetB beanobjectofBanddefineB tobethecolimitofthefiltereddiagram A/B //A (cid:31)(cid:127) //B, wherethefirstarrowisthecanonicalprojectionfunctorandthesecondonetheinclusion functor.Wedenotethecorrespondingcolimitinjectionsby in ∶A→B foreveryf ∶A→B inA/B. f Clearly, the objects in A/B form a cocone on the above diagram and so we have a uniquemorphismb∶B →B suchthat b⋅in =f foreveryf ∶A→BinA/B. f Wewillnowprovethismorphismbtobecouniversal.Tothisend,letAbeanobjectof Ind(A),i.e., A=colimA i i∈I 10 J.Ada´mek,S.Milius,R.S.R.MyersandH.Urbat isafilteredcolimitinB ofobjectsfromA withcolimitinjectionsa ∶ A → A, i ∈ I. i i Givenamorphismf ∶A→B inB,themorphismf ⋅a ∶A →B isanobjectofA/B, i i andforeachconnectingmorphisma ∶A →A wehave i,j i j (f ⋅a )⋅a =f ⋅a . j i,j i Thus,a isamorphisminA/B andso i,j in ⋅a =in , f⋅aj i,j f⋅ai i.e.,themorphismsin ∶A →Bformacocone.Sowegetauniquef ∶A→B such f⋅ai i that f ⋅a =in foreveryi∈I. i f⋅ai Nowthefollowingdiagramcommutes: B b //B ?? OO ?? inf⑦⋅a⑦⑦i⑦⑦⑦⑦⑦ f(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)f(cid:0)(cid:0)(cid:0) A // A i ai Indeed, the outside and left-hand triangle commute, and so the right-hand one com- muteswhenprecomposedwitheverya ,i∈I,whencethattrianglecommutessincethe i colimitinjectionsa formajointlyepimorphicfamily. i Westillneedtoshowthatf isuniquesuchthatb⋅f =f.Soassumethatf ∶A→B is anysuch morphism.Fix i ∈ I. Then,since B is a filtered colimitandA is finitely i presentable,itfollowsthatthereexistssomeg ∶ A′ →B inA/B andsomemorphism i f′∶A →A′ suchthatthesquarebelowcommutes: i i in A′ g // B OOi OO ′ f f A // A i ai Itfollowsthatf′ isaconnectingmorphisminA/B fromf ⋅a tog: i g⋅f′=b⋅in ⋅f′=b⋅f ⋅a =f ⋅a . g i i Thereforewegetin ⋅f′=in sothat g f⋅ai f ⋅a =in ⋅f′=in , i g f⋅ai whichdeterminesf uniquely.Thiscompletestheproof. ⊓⊔ Theorem2.14. Coalg T istheInd-completionofCoalg T andformsacoreflective lfp f subcategoryofCoalgT.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.