.') .\H I LeonhardEuler(1707-1783) ReadEuler, readEuler, heismasterofusal/, Pierre-SimonLaplace(1749-1827) Eulercalculatedwithouteffort,justasmenbreathe. aseaglessustain fhemseh'esinfheair. DominiqueFran~oisJeanArago(1786-1853) ThestudyofEuler'sworksremainsthebestinstructioninthevariousareasof mathematicsandcanbereplacedbynoother. CarlFrederickGauss(1777-1855) Gamma EXPLORING EULER'S CONSTANT Julian Havil PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright © 2003byPrincetonUniversityPress PublishedbyPnncetonUniversityPress,4IWilliamStreet, Princeton,NewJersey08540 IntheUnitedKingdom PrincetonUniversityPress,3MarketPlace, Woodstock,OxfordshireOX20ISY Allrightsreserved LibraryofCongressCataloguing-in-PublicationData Havil,Julian, 1952 Gamma.exploringEuler'sconstant/JulianHavil p.cm. Includesbibliographicalreferencesandindex ISBN0-691-09983-9(acid-freepaper) I.Mathematicalconstants.2.Euler,Leonhard, 1707-1783.1.Title QA4I.H23 2003 5I3--dc2I 2002192453 BntishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBntishLibrary. ThisbookhasbeencomposedinTimes.TypesetbyT&TProductionsLtd,London. Printedonacid-freepaper.@ www.pupress.pnnceton.edu PrintedintheUnitedStatesofAmerica 10987654 DEDICATEDTOSIMON ANDDANIEL,WHOWILLNEVERREADIT BUTWHOWILLALWAYS BEPROUDTHATI WROTEIT, ANDTO GRAEME,WHOSHAREDTHATPRIDE, AS HESHAREDEVERYTHING Ihadafeeling onceaboutMathematics-thatIsawitall. Depthbeyonddepth was revealed to me-the Byss andAbyss. Isaw-asone might see the transit ofVenusoreventhe LordMayor'sShow-aquantitypassingthrough infinity and changing its sign from plus to minus. Isaw exactly why it happened and why thetergiversation was inevitablebutitwasafterdinnerand Iletitgo. SirWinstonChurchill (1874-1965) Contents Foreword xv Acknowledgements xvii Introduction xix CHAPTERONE TheLogarithmicCradle 1 1.1 AMathematical Nightmare-andanAwakening 1 1.2 TheBaron'sWonderfulCanon 4 1.3 ATouchofKepler 11 1.4 ATouchofEuler 13 1.5 Napier'sOtherIdeas 16 CHAPTER1\vo TheHarmonic Series 21 2.1 ThePrinciple 21 2.2 Generating Functionfor Hn 21 2.3 ThreeSurprisingResults 22 CHAPTERTHREE Sub-HarmonicSeries 27 3.1 AGentleStart 27 3.2 HarmonicSeriesofPrimes 28 3.3 The KempnerSeries 31 3.4 Madelung'sConstants 33 CHAPTERFOUR ZetaFunctions 37 4.1 Wheren IsaPositiveInteger 37 4.2 Wherex Isa Real Number 42 4.3 TwoResultsto EndWith 44 ix CONTENTS CHAPTERFIVE Gamma'sBirthplace 47 5.1 Advent 47 5.2 Birth 49 CHAPTERSIX TheGammaFunction 53 6.1 Exotic Definitions... 53 6.2 ... YetReasonable Definitions 56 6.3 GammaMeetsGamma 57 6.4 Complementand Beauty 58 CHAPTERSEVEN Euler'sWonderful Identity 61 7.1 TheAll-ImportantFormula... 61 7.2 ... AndaHintofIts Usefulness 62 CHAPTEREIGHT APromiseFulfilled 65 CHAPTERNINE WhatIsGamma ... Exactly? 69 9.1 GammaExists 69 9.2 GammaIs... WhatNumber? 73 9.3 ASurprisinglyGood Improvement 75 9.4 TheGermofaGreatIdea 78 CHAPTERTEN Gammaas aDecimal 81 10.1 Bernoulli Numbers 81 10.2 Euler-Maclaurin Summation 85 10.3 TwoExamples 86 10.4 The ImplicationsforGamma 88 CHAPTERELEVEN Gammaas aFraction 91 11.1 AMystery 91 11.2 AChallenge 91 11.3 AnAnswer 93 11.4 ThreeResults 95 11.5 Irrationals 95 11.6 PelI's Equation Solved 97 x
Description: