ebook img

G. T. Huynh and F. R. Adler. - Department of Mathematics, University PDF

17 Pages·2011·0.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview G. T. Huynh and F. R. Adler. - Department of Mathematics, University

Mathematical Medicine and Biology Advance Access published June 22, 2011 MathematicalMedicineandBiologyPage1 of 17 doi:10.1093/imammb/dqr007 MathematicalmodellingtheagedependenceofEpstein–Barrvirusassociated infectiousmononucleosis GIAOT.HUYNH∗ DepartmentofMathematicsandStatistics,OaklandUniversity,2200N.SquirrelRoad, Rochester,MI48309-4401,USA Correspondingauthor:[email protected] ∗ D o w AND n lo a FREDERICK R.ADLER de d DepartmentsofMathematicsandBiology,UniversityofUtah,155South,1400East, fro m Room233,SaltLakeCity,UT84112-0090,USA h ttp [email protected] ://im [Receivedon29September2010;revisedon19April2011;acceptedon4May2011] am m b .o MostpeoplegetEpstein–Barrvirus(EBV)infectionatyoungageandareasymptomatic.PrimaryEBV xfo infectioninadolescentsandyoungadults,however,oftenleadstoinfectiousmononucleosis(IM)with rd jo symptomsincludingfever,fatigueandsorethroatthatcanpersistformonths.Expansioninthenumberof u rn CD8+Tcells,especiallyagainstEBVlyticproteins,arethemaincauseofthesesymptoms.Wepropose als a mathematical model for the regulation of EBV infection within a host to address the dependence of .o rg IMonage.Thismodeltracksthenumberofvirus,infectedBcellandepithelialcellandCD8+ T-cell a/ responsestotheinfection.Weusethismodeltoinvestigatethreehypothesesforthehighincidenceof t U n IMinteenagersandyoungadults:salivaandantibodyeffectsthatincreasewithage,highcross-reactive iv e T-cellresponsesandahighinitialviralload.Themodelsupportsthefirsttwoofthesehypothesesand rs ity suggeststhatvariationinhostantibodyresponsesandthecomplexityofthepre-existingcross-reactive o T-cellrepertoire,bothofwhichdependonage,mayplayimportantrolesintheetiologyofIM. f U ta h Keywords:infectiousmononucleosis;mathematicalmodel. o n J a n u a ry 1 8 , 2 1. Introduction 0 1 2 Epstein–Barrvirus(EBV)isamemberoftheherpesvirusfamilyinfectsover90%ofhumansworldwide andcanpersistforthelifetimeoftheperson(Rickinson&Kieff,2001).EBVistransmittedbyintimate contact,mainlythroughsalivaandoropharyngealsecretion(Andiman,2006).Withinahost,thevirus primarily targets two cell types, B cells and epithelial cells. EBV enters B cells and epithelial cells through different routes using different glycoprotein complexes on its envelop (Hutt-Fletcher, 2007). Hostsalivaandantibodies,likeIgAandIgG,toviralglycoproteinscandecreasetheinfectionofBcells butenhancetheinfectionofepithelialcells(Sixbey&Yao,1992;Turketal.,2006). EBV can establish long-term infections in B cells, driving an infected B cell through stages of latentinfectionwheretheviralgenomeremainsinsidethecell.Thevirusstaysquiescentandremains invisible to the immune response within memory B cells. These latently infected memory B cells can c TheAuthor2011.PublishedbyOxfordUniversityPressonbehalfoftheInstituteofMathematicsanditsApplications.Allrightsreserved. (cid:13) 2of17 G.T.HUYNHANDF.R.ADLER beactivated,becomingplasma-likeBcellswithinwhichvirionsreplicateandburstout(lyticinfection). Infectionofepithelialcellstypicallyresultsinlyticreplicationwithvirusesburstingoutandcelldeath (Hutt-Fletcher,2005).Infectionsofbothcelltypesareimportant,asinvitroexperimentshowsthatvirus producedfromonecelltypepreferentiallyinfectstheother(Borza&Hutt-Fletcher,2002). MostpeoplegetEBVinfectionatyoungageandareasymptomatic.Adolescentsandyoungadults infected with EBV develop infectious mononucleosis (IM) in up to 50% of cases, with symptoms including fever, fatigue and sore throat that can persist for months (Andiman, 2006; Cohen, 2005). These symptoms are caused mainly by expansion in the number of CD8 T cells, especially against + EBVlyticproteinsexpressedduringlyticreplicationandproductionofvirions(Hislopetal.,2007). Sinceitsdiscoverymorethan40yearsago,EBVhasattractedmanyempiricalstudiesofitsabilityto persistwithinonehostanditsassociationwithcancers.However,EBVinfectsonlyhumansandalim- D o w itedrangeofhostcellsandlacksagoodanimalmodelstoinvestigateEBVinfectioninvivo(Rickinson, n lo 2005). Most hypotheses and conclusions about EBV infection are based on studies of cell cultures in a d e ecpoiltlhecetleiadlfarnodmBincfeelcltelidnepse.oVpliera.lMloaandysaasnpdecitnsfeocfteEdBcVelilndfeactatiomnussttilblereombtaaiinneodpefnroqmuessatliiovnasainndclbuldoiondg d from whatfactorsaffectingthedynamicsofinfectionthatmayleadtoIM. http In our previous work, we developed a mathematical model of the within-host dynamics to study ://im EBVlong-terminfectionandviralevolution(Huynh&Adler,2010).Inthisstudy,weextendthewithin- a m hostmodeltoincludefeaturesofimmunesystemthoughttobeimportantinIM:theroleofantibodies m b in shifting infections between the two cell types and the effect of specific and cross-reactive T-cell .o x responses.Themodeltracksthenumberofviruses,infectedBcellsandepithelialcells,specificCD8 + ford Tcellsandcross-reactiveCD8 Tcellsrespondingtotheinfection. jo + u Weusethismodeltoinvestigatethefollowingthreehypotheses: rna ls .o rg • SHaolsivtasaalinvdaaanndtibanotdibyoedfifeescttsoEBVproteinspromoteinfectionofepithelialcellswhich,inturn,can at U/ n induceanelevatedCD8 T-cellresponseagainstlyticinfection.Thishypothesiscomesfromobser- iv + e vationsthatsomeunknownfactorinhostsalivaandantibodiestoviralproteinshavebeenobserved rsity toenhanceepithelialcellinfectionandthatsalivaryIgAlevelincreaseswithage(Jafarzadehetal., o f U 2008;Sixbey&Yao,1992;Turketal.,2006;Weber-Mzelletal.,2004). ta h o • Cross-reactiveT-cellresponses n Ja Continuous exposure to different pathogens as people age can increase the complexity of the pre- n u a existing memory T-cell repertoire. Adolescents infected with EBV may recruit large numbers of ry 1 cross-reactivememoryTcellspreviouslycreatedinresponsetootherviralinfections.Thesecross- 8 , 2 reactivememoryT-cellresponsesmaybeeasiertobeactivatedthannaiveTcellsbutlessefficient 0 1 2 incontrollingtheinfectionthanprimaryresponsesfromnaiveTcells(Cluteetal.,2005;Rickinson &Kieff,1996). Theinitialviralload • Highviralchallengesinadolescents,oftenacquiredviakissing,mayinduceaggressiveCD8+T-cell response(Hislopetal.,2007). InonestudyusingdatacollectedfromthreeIMandthreeasymptomaticdonors,thelevelsofCD8 + Tcellsduringtheprimaryinfectionwereobservedtobebetween4and26foldshigherinIMcasesthan inasymptomaticcases(Silinsetal.,2001).Ourgoalofapplyingthemodelinstudyingthesehypotheses is not to predict the exact level of antibody effect, cross-reactive memory CD8 T-cell response or + MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 3of17 initialviralloadthatinducesIMbuttohelpinformulatingquestionsandprovidinginsightsforspecific biologicalstudyofIMinthelaboratory. 2. Model AddressingthethreehypothesesforthecausesofIMrequiresconsiderationofantibodyeffectsandstate variables representing cross-reactive T-cell responses to latent and lytic infection. Our mathematical model(Fig.1and(2.1))trackstwotypesoftargetcells,Bcellsandepithelialcells,viruses,twotypesof specificcytotoxicTcells(CTLs)attackinglatentlyinfectedBcells( T )andlyticallyinfectedcells(T ), 2 4 respectively, and two types of cross-reacting CTLs against latently (T ) and lytically (T )-infected 2c 4c D cells. B cells is classified further into four state variables: naive B cells ( B ), latently infected B cells o 1 w (B2),latentlyinfectedmemoryBcells(B3)andlyticallyinfectedBcellsorplasmacells(B4).B2andB3 nlo a representdifferentstagesoflatency. B arenewlyinfectedcells,expressingEBVlatentgenes(Thorley- d 2 e d Lawson,2005)andthuscanberecognizedandkilledbyeffectorTcells.B3representsthenextstage fro oflatencywithnoexpressionofviralgeneandhencenoTcellresponsetotheseinfectedmemorycells m h (Thorley-Lawson,2005). ttp Infectionofepithelialcellsoftenresultsinvirusreplicationandproduction.Epithelialcellsdonot ://im ordinarily harbour latent virus, which has been observed only in the cases of cancer like nasopharyn- am m gealcarcinoma.Themodelthusincludesonlytwostatevariables:uninfectedepithelialcells(E1)and b .o lytically infected epithelial cells (E4). Viruses are classified into virus derived from B cells ( VB) and xfo virus derived from epithelial cells (VE) since virus produced from one cell type preferentially infects rdjo the other (Borza & Hutt-Fletcher, 2002). Cytotoxic T-cell responses against viral latent and lytic pro- u rn teinshavebeendetectedinEBVpositiveindividuals(Cluteetal.,2010).ExpressionofEBVproteins als can also stimulate cross-reactive response from CD8+ T cells specific to influenza virus ( Clute et al., .org 2005). Four state variables for T-cell responses are included to examine the effect of these responses a/ t U n iv e rs ity o f U ta h o n J a n u a ry 1 8 , 2 0 1 2 FIG.1.ModelofEBVinfectionofBcellsandepithelialcells.AntibodieslikeIgAcanshifttheviraltargetfromBcellsto epithelialcells.Activationofcross-reactivememoryTcells(T2c,and T4c)thatarenotefficientinkillinginfectedcellsmay contributetothepathologyofIM. 4of17 G.T.HUYNHANDF.R.ADLER on the dynamics of infection. The model consists of a system of twelve ordinary differential equations: dB 1 d (B B ) f(a)μ V B f(a)μ V B , 1 0 1 Eb E 1 Bb B 1 dt = − − − dB 2 ρ(f(a)μ V B f(a)μ V B ) (d c)B k B T χ k B T , Eb E 1 Bb B 1 2 2 2 2 2 2 2 2 2c dt = + − + − − dB 3 cB rB srB , 2 3 3 dt = + − D dB4 ow rB d B k B T χ k B T , n dt = 3− 4 4− 4 4 4− 4 4 4 4c loa d e ddEt1 =de(E0−E1)−h(a)μBeVBE1−h(a)μEeVEE1, d from h ddEt4 =h(a)μBeVBE1+h(a)μEeVEE1−(de+γ)E4−k4E4T4−χ4k4E4T4c, (2.1) ttp://im a m dV m B b dt =nd4B4−dvVB, .ox fo rd dVE jo nγE d V , u dt = 4− v E rn a ls ddTt2 =(1−σ2)φ2TNw(B2)+θ2T2w(B2)−δT2, at U.org/ dT2c niv σ mφ T w(B ) mθ T w(B ) mδT , e dt = 2 2 M 2 + 2 2c 2 − 2c rsity dT4 (1 σ )φ T [w(B E )] θ T [w(B E )] δT , of U dt = − 4 4 N 4+ 4 + 4 4 4+ 4 − 4 tah o dT4c n J σ4mφ4TM[w(B4 E4)] mθ4T4c[w(B4 E4)] mδT4c. an dt = + + + − u a ry 1 ThedynamicsofBcellsobeytheseassumptions: 8 , 2 0 Naive B cells have an initial population size of B0 and turnover rate d1. They encounter and are 12 • infectedbyV andV withrates f(a)V μ and f(a)V μ ,respectively,where f(a)represents B E B Bb E Eb theinhibitingeffectofhostsalivaandantibodyresponsesoninfectionofBcells(2.3). Aninfectionofanaivecell, B ,maygiverisetooneormorelatentlyinfectedcells, B ,duetothe 1 2 • limitedproliferationofthesenewlyinfectedcells,whereρ istheproliferationfactor.These B cells 2 dieatrated andarerecognizedandkilledbyspecificorcross-reactiveeffectorTcellsatrate k or 2 2 χ k , respectively. They can also enter the latently infected memory state, driven by EBV turning 2 2 offitsgeneexpression,atratec. Infected memory cells, B , obey homeostatic regulation similar to normal memory B cells. They 3 • areinvisibletotheimmunesystemandundergocelldivisionwithrater,whereonecellgoesinto MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 5of17 lytic infection and one stays in the memory state. The rate sr represents the death of B due to 3 homeostaticregulationofmemorycells,wheres istheregulationfactor.Foranormalhomeostasis, s 2balancestheproliferationrateof2r (Macallanetal.,2005). = LyticallyinfectedBcells, B ,arisefromlyticreactivationofmemoryinfectedBcellsatrater,die 4 • andreleasevirusesatrated andcanbekilledbyspecificorcross-reactiveeffectorTcellsatrate k 4 4 orχ k ,respectively. 4 4 Here, χj (j 2 or 4), with 0 6 χj 6 1, characterizes the efficiency of cross-reactive T cells in = killinginfectedcells,comparedtospecificTcells.Thesmaller χ isthemoreinefficientcross-reactive j Tcellsareinkillinginfectedcells. Thedynamicsofepithelialcellsassumethefollowing: D o w n • aUnndinafreectiendfeecpteitdhebliyalVcBellasnhdavVeEinwitiitahlrpaotepsulha(tiao)nVsBiμzeBoefaEnd0 wh(itah)VtuErnμoEvee,rrreastpeedceti.vTelhye.yHeenrceo,uhn(tae)r loaded represents the enhancement effect of host saliva and antibody responses on infection of epithelial fro m cells(2.4). h ttp • Lytically infected epithelial cells, E4, die at natural rate de, die due to virus bursting out at rate γ, ://im andcanbekilledbyspecificorcross-reactiveeffectorTcellsatrate k4orχ4k4,respectively. am m Theeffectsofhostsalivaandantibodyresponsesontheinfectionofthetwocelltypesarerepresented b .o bythefunctions f andh andincludedasparametersinthecell-specificinfectionterms.Thisisbased xfo ontheobservationthatsalivafrominfectedpeopleandantibodiestoviralglycoproteinsinterferewith rd jo infectionofBcellsandenhanceinfectionofepithelialcells(Turketal.,2006).Fromlimiteddatainthis urn invitrostudy,weobtainthelinearrelationshipbetween f andh thatcanbedescribedinthefollowing als .o equation: rg a/ h 1 λ λf , (2.2) t U n = + − iv e wanhteibreodλy≈eff3e2c.tTs,hef fduenccrteiaosnessftoarnedphrecseanrrtydneocruenaistesd.WefifictiheonuctythineiannfteibctoidoyneofffeBctc,eflls=an1dandhhin=cre1a.sWesittoh rsity o represent increased efficiency in infection of epithelial cells. To model the dependence of f and h on f Uta h antibodyresponse,weassumethatthetwofunctionstakeontheforms o n J a a2 nu f(a)=1− A2 a2 , (2.3) ary 1 + 8 λa2 , 20 h(a) 1 , (2.4) 12 = + A2 a2 + where a represents the strength of saliva and antibody effects. We will refer to a as the antibody effectfromnowonbecausethefactor(s)insalivathatcanenhanceinfectionofepithelialcellsremain unknown.Thefunctions f(a)andh(a)taketheformofHillfunctions,whereλisthemaximumlevel of the antibody effect on the infection of epithelial cells and A is the level of a where the effect on theinfectionofBcellsandepithelialcellsishalfmaximal.Asa increases, f(a)decreaseswhileh(a) increases before saturating. This saturating form assumes that a certain level of antibody response is requiredtohavestrongeffectsontheinfectionofbothcelltypes. Freeviruses,V andV ,areproducedfromBcellsandepithelialcellsatratesnd andnγ,respec- B E 4 tively,wheren istheaverageburstsize.Thesevirusesdieatrated .TomodeltheCTLresponse,we v 6of17 G.T.HUYNHANDF.R.ADLER separatethespecificresponsesagainstlatent( T )andlytic(T )infectioncomingfromnaiveTcellsand 2 4 thecross-reactiveresponses(T andT )comingfromthememoryTcellsspecifictootherencountered 2c 4c pathogens. Weassumethatthenaiveandmemorypopulations, T and T ,arefixedatconstantlevelsdueto N M homeostatic regulation of these two pools of T cells (Stockinger et al., 2004) and also for the mathe- maticalconvenienceofthemodel.Uponstimulationbyviralantigens,T becomeeffectorcellsagainst N latentorlyticinfectionatrate(1 σ )φ or(1 σ )φ ,respectively,whereσ isthefractionofcross- 2 2 4 4 j − − reactive T-cell response. With further stimulation by viral antigens from infected cells, the activated effectorcells,T andT ,canproliferatewithratesθ andθ ,respectively.Eachtypeofeffectorcelldies 2 4 2 4 atasimilarrateδ.ActivationandproliferationofCTLssaturateasafunctionoftheavailableinfected cells D o w n w(Bj)= K BjBj , (2.5) loaded + fro m where K is the number of infected cells at which activation or proliferation is half maximal and is h assumedtobethesameforbothresponses. ttp Cross-reactive responses, T2c and T4c, are activated from the memory population at rate σjmφj, ://im a wherem > 1isameasurementofhowmuchfasteraresponsecanbeactivatedfrommemoryTcells m m comparedtoactivationfromnaiveTcells.Thesecross-reactivememorycellsareassumedtohavefaster b .o dynamics than specific T cells. Although they may be activated quickly and proliferate rapidly, they xfo die faster (by a factor m). This comes from observations that memory cells respond with fast kinetics rd jo (Kedl&Mescher,1998)butarealsomoresusceptibletodeath(Cerwenkaetal.,1999).Furthermore,T urn cellsobtainedfromacuteIMpatientshavebeenshowntohavehighexpressionofprogrammed-death-1 als .o (Hislopetal.,2007). rg Thesystem(2.1)hastwoequilibria:aninfection-freeequilibriumandapersistentequilibrium.The at U/ infection-freeequilibriumisgivenby n iv e rs B1∗ = B0, E1∗ = E0, ity o f U withotherstatevariablesequalzero.Thestabilityoftheinfection-freeequilibriumisdeterminedbythe ta h basicreproductiveratio,ofEBVinanaivehost(Heffernanetal.,2005): o n J a n R0 = 2ndv2 (cid:18)(ρsf−(a1))μ(dB2b+B0cc) + h(ad)eμ+EeγE0γ(cid:19) uary 18 , 2 0 n ρf(a)μBbB0c h(a)μEeE0γ 2 4ρf(a)μEbB0ch(a)μBeE0γ 12 . (2.6) + 2dv2s(cid:18)(s−1)(d2+c) − (de+γ) (cid:19) + (s−1)(d2+c)(de+γ) Infections of both B cells and epithelial cells contribute to the basic reproductive ratio of EBV. The antibody effects, f(a) and h(a), shift the weight of R contribution from B cells to epithelial cells. 0 If R <1, the infection-free equilibrium is stable and the infection cannot establish within a host. If 0 R >1,theinfection-freeequilibriumisunstableandEBVcanestablishapersistentinfection,whereall 0 statevariablestakeonpositivevalues.Tables1and2presenttheparametervaluesusedforsimulations andanalysisofthemodel. Assuming no cross-reactive responses (σ ,σ 0), the dynamics of viruses and T cells for the 2 4 = caseswithoutantibodyeffect(a 0)andwithantibodyeffect(a 10)areshowninFig.2(iandii), = = MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 7of17 TABLE1 Parameters for the dynamics of B cells and antibody effect used in the model simulations (2.1).WeusemanyparametersfromPathSim,wheretheratesareestimatedandgiveninaunitofper6 min(Shapiroetal.,2008)andconvertthemintotheunitofperminute Parameter Description Value Value Reference d TurnoverrateofnaiveBcells 1/6000 min 1 (Shapiroetal.,2008) 1 − μ Bcellinfectionrateper 3.3 10 10 min 1virus 1 (Shapiroetal.,2008)† Eb − − − × epithelialcellvirus μ Bcellinfectionrateper μ /100 min 1virus 1 (Hutt-Fletcher,2005) Bb Eb − − B-cellvirus D ρ Proliferationfactor 2 Nounit (Shapiroetal.,2008) o w d Deathrateoflatentlyinfected 1/11520 min 1 (Shapiroetal.,2008) n 2 − lo Bcells ad e c gRoaitnegoifnltaotemntelmyoinryfescttaegdecells 0.001 min−1 (Shapiroetal.,2008)‡ d from k2 Rateoflatentlyinfected 3.8×10−8 min−1cell−1 (Shapiroetal.,2008)§ http r RBacteellosfkreilalecdtivbaytiTonceolflslytic 8.3 10 5 min 1 (Shapiroetal.,2008) ://im − − a × m infectionfromlatentinfection m s Regulationfactorof 2 Nounit (Macallanetal.,2005) b.o x memoryBcells fo d4 Deathrateoflyticallyinfected 1/4320 min−1 (Shapiroetal.,2008) rdjo cellsduetovirusesburstingout urn k4 Rateoflyticallyinfected 7.6×10−8 min−1cell−1 (Shapiroetal.,2008)§ als.o BcellskilledbyTcells rg a Thestrengthofantibodyeffect Variable(0–40) Nounit a/ t U A Levelofawhereantibodyeffect 10 Nounit n ishalfmaximal ive λ Maximallevelofantibodyeffect 32 Nounit (Turketal.,2006)¶ rsity onepithelialcellinfection of U †Probabilityofvirusandcellencounterperminutemultipliedbyprobabilityofinfectionanddividedbythenumberof tah o v‡Wiruesetask(e≈th1i0s7to).bethesamerateastheestimationof0.1%oflymphocytesleavingtheWaldeyer’sringperminute. n Jan n§PumrobbearboilfitTyio(fly1m04p)h.ocyteencounterperminutemultipliedbytheprobabilitythatTi killsitstargetanddividedbythe uary 1 ¶Estimatedfro≈mlimiteddatagiveninaninvitrostudy(Borza&Hutt-Fletcher,2002). 8, 2 0 1 2 respectively.Theantibodyeffectgreatlyincreasesthenumberofvirusesbeingproduced,withmostof thisincreasecomingfromepithelialcellviruses.ElevatednumberofTcellsagainstvirallyticproteins areinducedduringprimaryinfection. 3. ApplicationtoIM EBVinfectioninchildrenofyoungageisusuallyasymptomatic.Adolescentsandyoungadultsinfected with EBV may develop flu-like symptoms referred to as IM. These symptoms result from a massive T-cell response to EBV a few weeks after the initial viral infection that can last from a few weeks to severalmonths(Cohen,2005).TheT-cellresponsesagainstvirallatentproteinsaregenerallysmallerin 8of17 G.T.HUYNHANDF.R.ADLER TABLE2 Parametersforthedynamicsofepithelialcells,virusandT-cellresponsesusedinthemodel simulations(2.1) Parameter Description Value Unit Reference d Turnoverrateofepithelialcells 1/6000 min 1 (Shapiroetal.,2008)† e − μ Epithelialcellinfectionrate 3 10 11 min 1virus 1 (Shapiroetal.,2008)‡ Be − − − × perB-cellvirus μ Epithelialcellinfectionrate μ /5 min 1virus 1 Hutt-Fletcher(2005) Ee Be − − perepithelialcellvirus γ Deathrateofinfectedepithelial 1/6000 min−1 Dow cellsduetovirusesburstingout (Shapiroetal.,2008)§ n lo ndσvj VDFriearaactlthiborunartsoetfoseiffzfveeicrutosrcellsactivated Var1ia1/b20l10e60(00–1) virNmuosi∙ncu−enl1ilt−1 SShhaappiirrooeettaall..((22000088)) aded from fromcross-reactivememoryTcells h ttp m FfraocmtomroefmfoasryterTrceespllosnse 5 Nounit Kedl&Mescher(1998) ://im a φ2 RateofT-cellactivation 1.95 10−5 min−1 Shapiroetal.(2008)¶ mm againstlatentinfection × b.o φ4 RagaatienostflTy-tcicelilnafcetcitviaotnion 4.48×10−5 min−1 Shapiroetal.(2008)¶ xfordjo θ2 RateofT-cellproliferation 3.25 10−5 min−1 Shapiroetal.(2008)k urn × a againstlatentinfection ls .o θ4 RagaatienostflTy-tcicelilnpfreocltiifoenration 3.25×10−5 min−1 Shapiroetal.(2008) at Urg/ K Numberofinfectedcellswhen 105 Cell Jones&Perelson(2005) n iv T-cellactivationishalfmaximal ers δ DeathrateofTcells 1/156000 min−1 Shapiroetal.(2008) ity o †Estimated,takentobethesameasd1. f Uta ‡EstimatedtakentobelessthanμEb(Turketal.,2006). h o §Estimatedtakentobelessthand4(Borza&Hutt-Fletcher,2002). n J ¶kPPrroobbaabbiilliittyyooffllyymmpphhooccyytteeeennccoouunntteerrppeerrmmiinnuutteemmuullttiipplliieeddbbyytthheepfrreoqbuaebnilciytyooffcTeliladcitviivsaitoinon(ebvyerByi8,–w1h2erhe).i=2or4. anuary 1 8 , 2 0 magnitudethantheT-cellresponsesagainstvirallyticproteinsduringtheacutephaseofIM.Theacute 12 phase is followed by convalescence and eventually a virus carrier state where the CD8 population + resolvestoalevelcomparabletothatinasymptomaticcarriers(Hislopetal.,2007). Weusenumericalsolutionsofourmodeltoinvestigatethethreehypothesesforthehighprevalence ofIMinteenagersandyoungadults:salivaandantibodyeffects,cross-reactiveT-cellresponsesandthe initialviralload.ThetotalnumberofTcells(bothspecificandcross-reactiveones)andthelyticT-cell ratioatthepeakofinfectionareusedasthetwokeymeasurementsofIM.ThelyticT-cellratioisthe ratiobetweeneffectorTcellsrespondingagainstlyticinfectionandeffectorTcellsrespondingagainst latentinfection,(T T )/(T T ).Awiderangeofvaluesofthesetwomeasurementshasbeen 4 4C 2 2C + + observedinIMpatients.Individualepitoperesponsesagainstlatentandlyticinfectionscanaccountfor 0.1–5%and1–40%ofthetotalCD8 T-cellpopulation,respectively(Hislopetal.,2007). + MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 9of17 D o w n lo a d e d fro m h ttp ://im a m m b .o x fo rd FIG.2.DynamicsofvirusesandTcellsinthecaseofnocross-reactiveT-cellresponses(σj 0).(i)Withoutantibodyeffect jou (a 0).(ii)Withantibodyeffect(a 10).Theinsetsshowthelevelofpersistentvirusforthe=twocases.Parametervaluesused rn are=showninTables1and2. = als.o rg a/ 3.1 Antibodyeffects t U n iv Race, sex and age are at least in part responsible for individual differences in antibody responses e rs (Buckley & Dorsey, 1971; Childers et al., 2003; Jafarzadeh et al., 2008), which may influence the ity o outcomes of EBV infection. Titers of antibody responses specific to EBV viral capsid antigen, IgA f U andIgG,havebeenobservedtoincreasewithageandIgAattainsitshighestlevelduringtheonsetof ta h diseasewithinIMpatients(Edwards&Woodroof,1979;Oberenderetal.,1986).Furthermore,individ- on J ualsareexposedtomorepathogensastheyage.EBVinfectioninyoungadultsmayactivateantibody an u responses that are specific to other viruses but cross-reactive to EBV. As IgG and IgA responses to ary EBVglycoproteinscanenhancethelyticinfectionofepithelialcells,theprobabilityofgettingIMmay 18 increasewithage. , 20 1 To examine this hypothesis with our model, we vary the strength of the antibody effect (a) and 2 studyitsinfluenceonthetotalnumberofTcellsandthelyticT-cellratio(Fig. 3)measuredatthepeak of infection. The total number of T cells increases with the level of a but then decreases when a is large. At high levels of antibody response, infection of B cells is strongly suppressed while the effect on enhancement of lytic infection of epithelial cells saturates, leading to a decreased total number of Tcells(Fig.3(i))andincreasedlyticT-cellratio(Fig.3(ii)). 3.2 Cross-reactiveT-cellresponses Massive expansion of CD8 T cells responding to EBV causes the symptoms of IM (Silins et al., + 2001). It has been proposed that the high susceptibility of teenagers and young adults to IM may be 10of17 G.T.HUYNHANDF.R.ADLER D o w n atFehvtIeGapla.euba3ask.tee:Andrncaaettitibootohfbdeceyrptoweesafesfk-eerncoetafsthcionteinfvneetcuhTtmeiocbtnoee.tlralPsloan(frσuaTmmjc=ebeteelrl0rs)ov.afa(gTliau)iecTnseoslattlasrlley(ntTsiuh2cmo+iwnbfTneer2cicontif+oTCnaTbD(4lT8e+4s+)1TTa4ancncd)edaltlh2nse.dantthutehmelbypeteircaokTf-ocTfeilcnlefrlealcstitoaiog(na(.iTn(4isit+)lTaTth4eecn)lt/yi(tniTcf2eTc+-tcioTenl2lc(r)Ta)2tii)on, loaded fro m h ttp duetoamorecomplexmemoryCD8repertoirethaninyoungchildren.Asindividualsage,thememory ://im CD8 repertoire gets more complex due to exposure to different pathogens. Adolescents infected with a m EBV may recruit a large number of cross-reactive memory T cells previously created in response to m b otherviralinfections(Rickinson&Kieff,1996).Infact,ithasbeenshownthatmemoryCD8+ Tcells .oxfo specific to influenza virus can be activated and respond to stimulation by EBV lytic proteins ( Clute rd etal.,2005).Boththemagnitudeandtheefficiencyofcross-reactiveTcellsinkillinginfectedcellsmay jou rn contributetotheetiologyofIM.Thelevelofcross-reactivememoryTcellcanincreasewithage.These a ls memorycellsmaybefasteratactivationandproliferationcomparedtonaiveTcells(Veiga-Fernandes .o rg etal.,2000)butlessefficientincontrollingtheinfection( Thorley-Lawson,2005). a/ AlargefractionofCD8 TcellscreatedduringthecourseofIMrespondtolyticinfection(5–50% t U + n comparedto1–3%forTcellsrespondingtolatentinfection)(Callanetal.,1998;Hislopetal.,2002). ive rs SinceEBVhasmanymorelyticgenesthanlatentgenes(Robertson,2005),itislikelythattherearemore ity cross-reactiveTcellstoEBVlyticinfectionthantolatentinfection.Wefirstassumecross-reactionof of U onlyT-cellresponsesagainstlyticinfection.Toaddressthisassumptionwithourmodel,wesetσ2 0 ta = h andconsidervfi edifferentvaluesof σ4,0,0.3,0.6,0.8and1.Asσ4increases,thefractionoflyticT-cell on Tre-scpeollnrseespcoonmsien;galflrloymticcTrocsse-lrlseaacrteivceromsse-mreoarcytivTe.cells increases. At σ4 = 1, there is no specific lytic Janua ry To facilitate comparison with the antibody effect (Fig. 3), we present the effects of cross-reactive 1 8 T cells on the development of IM using similar plots, with vfi e curves in each representing different , 2 0 valuesofthelevelofcross-reactivelyticTcells(σ4)(Fig.4).Thisfigurealsoillustratestheimpactof 12 χ , the efficiency of cross-reactive T cells in killing lytically infected cells, on the two measurements 4 ofIM.Acrossalllevelsofantibodyeffects(a),theincreaseinσ greatlyelevatesthetotalnumberof 4 T cells and the lytic T-cell ratio. This effect, however, diminishes as χ increases. At χ 1, cross- 4 4 = reactivelyticTcellsareasefficientasspecificTcellsinkillinginfectedcells.Infact,duetotheirfaster response,cross-reactiveTcellsreducetheoverallT-cellresponsesandtheprobabilityofIM. Wenowaddthepossibilityofcross-reactiveT-cellresponsesagainstlatentinfection.Figure5shows the effects of this addition on the two measurements of IM. For each level of σ , we set σ 0.2σ 4 2 4 = toassumelowerlevelsofcross-reactiveTcellsagainstlatentinfectioncomparedtolyticinfection.We analysed and observed only minimal impacts of variation in the efficiency of cross-reactive T cells in killinglatentlyinfectedcells(χ )ontheresults.Wethusfix χ 0.5forthisanalysis.Incomparison 2 2 =

Description:
Jun 22, 2011 CD8+ T cells, especially against EBV lytic proteins, are the main cause infected with EBV develop infectious mononucleosis (IM) in up to dengue virus- specific T-cell clones for variant peptides representing heterologous.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.