Mathematical Medicine and Biology Advance Access published June 22, 2011 MathematicalMedicineandBiologyPage1 of 17 doi:10.1093/imammb/dqr007 MathematicalmodellingtheagedependenceofEpstein–Barrvirusassociated infectiousmononucleosis GIAOT.HUYNH∗ DepartmentofMathematicsandStatistics,OaklandUniversity,2200N.SquirrelRoad, Rochester,MI48309-4401,USA Correspondingauthor:[email protected] ∗ D o w AND n lo a FREDERICK R.ADLER de d DepartmentsofMathematicsandBiology,UniversityofUtah,155South,1400East, fro m Room233,SaltLakeCity,UT84112-0090,USA h ttp [email protected] ://im [Receivedon29September2010;revisedon19April2011;acceptedon4May2011] am m b .o MostpeoplegetEpstein–Barrvirus(EBV)infectionatyoungageandareasymptomatic.PrimaryEBV xfo infectioninadolescentsandyoungadults,however,oftenleadstoinfectiousmononucleosis(IM)with rd jo symptomsincludingfever,fatigueandsorethroatthatcanpersistformonths.Expansioninthenumberof u rn CD8+Tcells,especiallyagainstEBVlyticproteins,arethemaincauseofthesesymptoms.Wepropose als a mathematical model for the regulation of EBV infection within a host to address the dependence of .o rg IMonage.Thismodeltracksthenumberofvirus,infectedBcellandepithelialcellandCD8+ T-cell a/ responsestotheinfection.Weusethismodeltoinvestigatethreehypothesesforthehighincidenceof t U n IMinteenagersandyoungadults:salivaandantibodyeffectsthatincreasewithage,highcross-reactive iv e T-cellresponsesandahighinitialviralload.Themodelsupportsthefirsttwoofthesehypothesesand rs ity suggeststhatvariationinhostantibodyresponsesandthecomplexityofthepre-existingcross-reactive o T-cellrepertoire,bothofwhichdependonage,mayplayimportantrolesintheetiologyofIM. f U ta h Keywords:infectiousmononucleosis;mathematicalmodel. o n J a n u a ry 1 8 , 2 1. Introduction 0 1 2 Epstein–Barrvirus(EBV)isamemberoftheherpesvirusfamilyinfectsover90%ofhumansworldwide andcanpersistforthelifetimeoftheperson(Rickinson&Kieff,2001).EBVistransmittedbyintimate contact,mainlythroughsalivaandoropharyngealsecretion(Andiman,2006).Withinahost,thevirus primarily targets two cell types, B cells and epithelial cells. EBV enters B cells and epithelial cells through different routes using different glycoprotein complexes on its envelop (Hutt-Fletcher, 2007). Hostsalivaandantibodies,likeIgAandIgG,toviralglycoproteinscandecreasetheinfectionofBcells butenhancetheinfectionofepithelialcells(Sixbey&Yao,1992;Turketal.,2006). EBV can establish long-term infections in B cells, driving an infected B cell through stages of latentinfectionwheretheviralgenomeremainsinsidethecell.Thevirusstaysquiescentandremains invisible to the immune response within memory B cells. These latently infected memory B cells can c TheAuthor2011.PublishedbyOxfordUniversityPressonbehalfoftheInstituteofMathematicsanditsApplications.Allrightsreserved. (cid:13) 2of17 G.T.HUYNHANDF.R.ADLER beactivated,becomingplasma-likeBcellswithinwhichvirionsreplicateandburstout(lyticinfection). Infectionofepithelialcellstypicallyresultsinlyticreplicationwithvirusesburstingoutandcelldeath (Hutt-Fletcher,2005).Infectionsofbothcelltypesareimportant,asinvitroexperimentshowsthatvirus producedfromonecelltypepreferentiallyinfectstheother(Borza&Hutt-Fletcher,2002). MostpeoplegetEBVinfectionatyoungageandareasymptomatic.Adolescentsandyoungadults infected with EBV develop infectious mononucleosis (IM) in up to 50% of cases, with symptoms including fever, fatigue and sore throat that can persist for months (Andiman, 2006; Cohen, 2005). These symptoms are caused mainly by expansion in the number of CD8 T cells, especially against + EBVlyticproteinsexpressedduringlyticreplicationandproductionofvirions(Hislopetal.,2007). Sinceitsdiscoverymorethan40yearsago,EBVhasattractedmanyempiricalstudiesofitsabilityto persistwithinonehostanditsassociationwithcancers.However,EBVinfectsonlyhumansandalim- D o w itedrangeofhostcellsandlacksagoodanimalmodelstoinvestigateEBVinfectioninvivo(Rickinson, n lo 2005). Most hypotheses and conclusions about EBV infection are based on studies of cell cultures in a d e ecpoiltlhecetleiadlfarnodmBincfeelcltelidnepse.oVpliera.lMloaandysaasnpdecitnsfeocfteEdBcVelilndfeactatiomnussttilblereombtaaiinneodpefnroqmuessatliiovnasainndclbuldoiondg d from whatfactorsaffectingthedynamicsofinfectionthatmayleadtoIM. http In our previous work, we developed a mathematical model of the within-host dynamics to study ://im EBVlong-terminfectionandviralevolution(Huynh&Adler,2010).Inthisstudy,weextendthewithin- a m hostmodeltoincludefeaturesofimmunesystemthoughttobeimportantinIM:theroleofantibodies m b in shifting infections between the two cell types and the effect of specific and cross-reactive T-cell .o x responses.Themodeltracksthenumberofviruses,infectedBcellsandepithelialcells,specificCD8 + ford Tcellsandcross-reactiveCD8 Tcellsrespondingtotheinfection. jo + u Weusethismodeltoinvestigatethefollowingthreehypotheses: rna ls .o rg • SHaolsivtasaalinvdaaanndtibanotdibyoedfifeescttsoEBVproteinspromoteinfectionofepithelialcellswhich,inturn,can at U/ n induceanelevatedCD8 T-cellresponseagainstlyticinfection.Thishypothesiscomesfromobser- iv + e vationsthatsomeunknownfactorinhostsalivaandantibodiestoviralproteinshavebeenobserved rsity toenhanceepithelialcellinfectionandthatsalivaryIgAlevelincreaseswithage(Jafarzadehetal., o f U 2008;Sixbey&Yao,1992;Turketal.,2006;Weber-Mzelletal.,2004). ta h o • Cross-reactiveT-cellresponses n Ja Continuous exposure to different pathogens as people age can increase the complexity of the pre- n u a existing memory T-cell repertoire. Adolescents infected with EBV may recruit large numbers of ry 1 cross-reactivememoryTcellspreviouslycreatedinresponsetootherviralinfections.Thesecross- 8 , 2 reactivememoryT-cellresponsesmaybeeasiertobeactivatedthannaiveTcellsbutlessefficient 0 1 2 incontrollingtheinfectionthanprimaryresponsesfromnaiveTcells(Cluteetal.,2005;Rickinson &Kieff,1996). Theinitialviralload • Highviralchallengesinadolescents,oftenacquiredviakissing,mayinduceaggressiveCD8+T-cell response(Hislopetal.,2007). InonestudyusingdatacollectedfromthreeIMandthreeasymptomaticdonors,thelevelsofCD8 + Tcellsduringtheprimaryinfectionwereobservedtobebetween4and26foldshigherinIMcasesthan inasymptomaticcases(Silinsetal.,2001).Ourgoalofapplyingthemodelinstudyingthesehypotheses is not to predict the exact level of antibody effect, cross-reactive memory CD8 T-cell response or + MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 3of17 initialviralloadthatinducesIMbuttohelpinformulatingquestionsandprovidinginsightsforspecific biologicalstudyofIMinthelaboratory. 2. Model AddressingthethreehypothesesforthecausesofIMrequiresconsiderationofantibodyeffectsandstate variables representing cross-reactive T-cell responses to latent and lytic infection. Our mathematical model(Fig.1and(2.1))trackstwotypesoftargetcells,Bcellsandepithelialcells,viruses,twotypesof specificcytotoxicTcells(CTLs)attackinglatentlyinfectedBcells( T )andlyticallyinfectedcells(T ), 2 4 respectively, and two types of cross-reacting CTLs against latently (T ) and lytically (T )-infected 2c 4c D cells. B cells is classified further into four state variables: naive B cells ( B ), latently infected B cells o 1 w (B2),latentlyinfectedmemoryBcells(B3)andlyticallyinfectedBcellsorplasmacells(B4).B2andB3 nlo a representdifferentstagesoflatency. B arenewlyinfectedcells,expressingEBVlatentgenes(Thorley- d 2 e d Lawson,2005)andthuscanberecognizedandkilledbyeffectorTcells.B3representsthenextstage fro oflatencywithnoexpressionofviralgeneandhencenoTcellresponsetotheseinfectedmemorycells m h (Thorley-Lawson,2005). ttp Infectionofepithelialcellsoftenresultsinvirusreplicationandproduction.Epithelialcellsdonot ://im ordinarily harbour latent virus, which has been observed only in the cases of cancer like nasopharyn- am m gealcarcinoma.Themodelthusincludesonlytwostatevariables:uninfectedepithelialcells(E1)and b .o lytically infected epithelial cells (E4). Viruses are classified into virus derived from B cells ( VB) and xfo virus derived from epithelial cells (VE) since virus produced from one cell type preferentially infects rdjo the other (Borza & Hutt-Fletcher, 2002). Cytotoxic T-cell responses against viral latent and lytic pro- u rn teinshavebeendetectedinEBVpositiveindividuals(Cluteetal.,2010).ExpressionofEBVproteins als can also stimulate cross-reactive response from CD8+ T cells specific to influenza virus ( Clute et al., .org 2005). Four state variables for T-cell responses are included to examine the effect of these responses a/ t U n iv e rs ity o f U ta h o n J a n u a ry 1 8 , 2 0 1 2 FIG.1.ModelofEBVinfectionofBcellsandepithelialcells.AntibodieslikeIgAcanshifttheviraltargetfromBcellsto epithelialcells.Activationofcross-reactivememoryTcells(T2c,and T4c)thatarenotefficientinkillinginfectedcellsmay contributetothepathologyofIM. 4of17 G.T.HUYNHANDF.R.ADLER on the dynamics of infection. The model consists of a system of twelve ordinary differential equations: dB 1 d (B B ) f(a)μ V B f(a)μ V B , 1 0 1 Eb E 1 Bb B 1 dt = − − − dB 2 ρ(f(a)μ V B f(a)μ V B ) (d c)B k B T χ k B T , Eb E 1 Bb B 1 2 2 2 2 2 2 2 2 2c dt = + − + − − dB 3 cB rB srB , 2 3 3 dt = + − D dB4 ow rB d B k B T χ k B T , n dt = 3− 4 4− 4 4 4− 4 4 4 4c loa d e ddEt1 =de(E0−E1)−h(a)μBeVBE1−h(a)μEeVEE1, d from h ddEt4 =h(a)μBeVBE1+h(a)μEeVEE1−(de+γ)E4−k4E4T4−χ4k4E4T4c, (2.1) ttp://im a m dV m B b dt =nd4B4−dvVB, .ox fo rd dVE jo nγE d V , u dt = 4− v E rn a ls ddTt2 =(1−σ2)φ2TNw(B2)+θ2T2w(B2)−δT2, at U.org/ dT2c niv σ mφ T w(B ) mθ T w(B ) mδT , e dt = 2 2 M 2 + 2 2c 2 − 2c rsity dT4 (1 σ )φ T [w(B E )] θ T [w(B E )] δT , of U dt = − 4 4 N 4+ 4 + 4 4 4+ 4 − 4 tah o dT4c n J σ4mφ4TM[w(B4 E4)] mθ4T4c[w(B4 E4)] mδT4c. an dt = + + + − u a ry 1 ThedynamicsofBcellsobeytheseassumptions: 8 , 2 0 Naive B cells have an initial population size of B0 and turnover rate d1. They encounter and are 12 • infectedbyV andV withrates f(a)V μ and f(a)V μ ,respectively,where f(a)represents B E B Bb E Eb theinhibitingeffectofhostsalivaandantibodyresponsesoninfectionofBcells(2.3). Aninfectionofanaivecell, B ,maygiverisetooneormorelatentlyinfectedcells, B ,duetothe 1 2 • limitedproliferationofthesenewlyinfectedcells,whereρ istheproliferationfactor.These B cells 2 dieatrated andarerecognizedandkilledbyspecificorcross-reactiveeffectorTcellsatrate k or 2 2 χ k , respectively. They can also enter the latently infected memory state, driven by EBV turning 2 2 offitsgeneexpression,atratec. Infected memory cells, B , obey homeostatic regulation similar to normal memory B cells. They 3 • areinvisibletotheimmunesystemandundergocelldivisionwithrater,whereonecellgoesinto MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 5of17 lytic infection and one stays in the memory state. The rate sr represents the death of B due to 3 homeostaticregulationofmemorycells,wheres istheregulationfactor.Foranormalhomeostasis, s 2balancestheproliferationrateof2r (Macallanetal.,2005). = LyticallyinfectedBcells, B ,arisefromlyticreactivationofmemoryinfectedBcellsatrater,die 4 • andreleasevirusesatrated andcanbekilledbyspecificorcross-reactiveeffectorTcellsatrate k 4 4 orχ k ,respectively. 4 4 Here, χj (j 2 or 4), with 0 6 χj 6 1, characterizes the efficiency of cross-reactive T cells in = killinginfectedcells,comparedtospecificTcells.Thesmaller χ isthemoreinefficientcross-reactive j Tcellsareinkillinginfectedcells. Thedynamicsofepithelialcellsassumethefollowing: D o w n • aUnndinafreectiendfeecpteitdhebliyalVcBellasnhdavVeEinwitiitahlrpaotepsulha(tiao)nVsBiμzeBoefaEnd0 wh(itah)VtuErnμoEvee,rrreastpeedceti.vTelhye.yHeenrceo,uhn(tae)r loaded represents the enhancement effect of host saliva and antibody responses on infection of epithelial fro m cells(2.4). h ttp • Lytically infected epithelial cells, E4, die at natural rate de, die due to virus bursting out at rate γ, ://im andcanbekilledbyspecificorcross-reactiveeffectorTcellsatrate k4orχ4k4,respectively. am m Theeffectsofhostsalivaandantibodyresponsesontheinfectionofthetwocelltypesarerepresented b .o bythefunctions f andh andincludedasparametersinthecell-specificinfectionterms.Thisisbased xfo ontheobservationthatsalivafrominfectedpeopleandantibodiestoviralglycoproteinsinterferewith rd jo infectionofBcellsandenhanceinfectionofepithelialcells(Turketal.,2006).Fromlimiteddatainthis urn invitrostudy,weobtainthelinearrelationshipbetween f andh thatcanbedescribedinthefollowing als .o equation: rg a/ h 1 λ λf , (2.2) t U n = + − iv e wanhteibreodλy≈eff3e2c.tTs,hef fduenccrteiaosnessftoarnedphrecseanrrtydneocruenaistesd.WefifictiheonuctythineiannfteibctoidoyneofffeBctc,eflls=an1dandhhin=cre1a.sWesittoh rsity o represent increased efficiency in infection of epithelial cells. To model the dependence of f and h on f Uta h antibodyresponse,weassumethatthetwofunctionstakeontheforms o n J a a2 nu f(a)=1− A2 a2 , (2.3) ary 1 + 8 λa2 , 20 h(a) 1 , (2.4) 12 = + A2 a2 + where a represents the strength of saliva and antibody effects. We will refer to a as the antibody effectfromnowonbecausethefactor(s)insalivathatcanenhanceinfectionofepithelialcellsremain unknown.Thefunctions f(a)andh(a)taketheformofHillfunctions,whereλisthemaximumlevel of the antibody effect on the infection of epithelial cells and A is the level of a where the effect on theinfectionofBcellsandepithelialcellsishalfmaximal.Asa increases, f(a)decreaseswhileh(a) increases before saturating. This saturating form assumes that a certain level of antibody response is requiredtohavestrongeffectsontheinfectionofbothcelltypes. Freeviruses,V andV ,areproducedfromBcellsandepithelialcellsatratesnd andnγ,respec- B E 4 tively,wheren istheaverageburstsize.Thesevirusesdieatrated .TomodeltheCTLresponse,we v 6of17 G.T.HUYNHANDF.R.ADLER separatethespecificresponsesagainstlatent( T )andlytic(T )infectioncomingfromnaiveTcellsand 2 4 thecross-reactiveresponses(T andT )comingfromthememoryTcellsspecifictootherencountered 2c 4c pathogens. Weassumethatthenaiveandmemorypopulations, T and T ,arefixedatconstantlevelsdueto N M homeostatic regulation of these two pools of T cells (Stockinger et al., 2004) and also for the mathe- maticalconvenienceofthemodel.Uponstimulationbyviralantigens,T becomeeffectorcellsagainst N latentorlyticinfectionatrate(1 σ )φ or(1 σ )φ ,respectively,whereσ isthefractionofcross- 2 2 4 4 j − − reactive T-cell response. With further stimulation by viral antigens from infected cells, the activated effectorcells,T andT ,canproliferatewithratesθ andθ ,respectively.Eachtypeofeffectorcelldies 2 4 2 4 atasimilarrateδ.ActivationandproliferationofCTLssaturateasafunctionoftheavailableinfected cells D o w n w(Bj)= K BjBj , (2.5) loaded + fro m where K is the number of infected cells at which activation or proliferation is half maximal and is h assumedtobethesameforbothresponses. ttp Cross-reactive responses, T2c and T4c, are activated from the memory population at rate σjmφj, ://im a wherem > 1isameasurementofhowmuchfasteraresponsecanbeactivatedfrommemoryTcells m m comparedtoactivationfromnaiveTcells.Thesecross-reactivememorycellsareassumedtohavefaster b .o dynamics than specific T cells. Although they may be activated quickly and proliferate rapidly, they xfo die faster (by a factor m). This comes from observations that memory cells respond with fast kinetics rd jo (Kedl&Mescher,1998)butarealsomoresusceptibletodeath(Cerwenkaetal.,1999).Furthermore,T urn cellsobtainedfromacuteIMpatientshavebeenshowntohavehighexpressionofprogrammed-death-1 als .o (Hislopetal.,2007). rg Thesystem(2.1)hastwoequilibria:aninfection-freeequilibriumandapersistentequilibrium.The at U/ infection-freeequilibriumisgivenby n iv e rs B1∗ = B0, E1∗ = E0, ity o f U withotherstatevariablesequalzero.Thestabilityoftheinfection-freeequilibriumisdeterminedbythe ta h basicreproductiveratio,ofEBVinanaivehost(Heffernanetal.,2005): o n J a n R0 = 2ndv2 (cid:18)(ρsf−(a1))μ(dB2b+B0cc) + h(ad)eμ+EeγE0γ(cid:19) uary 18 , 2 0 n ρf(a)μBbB0c h(a)μEeE0γ 2 4ρf(a)μEbB0ch(a)μBeE0γ 12 . (2.6) + 2dv2s(cid:18)(s−1)(d2+c) − (de+γ) (cid:19) + (s−1)(d2+c)(de+γ) Infections of both B cells and epithelial cells contribute to the basic reproductive ratio of EBV. The antibody effects, f(a) and h(a), shift the weight of R contribution from B cells to epithelial cells. 0 If R <1, the infection-free equilibrium is stable and the infection cannot establish within a host. If 0 R >1,theinfection-freeequilibriumisunstableandEBVcanestablishapersistentinfection,whereall 0 statevariablestakeonpositivevalues.Tables1and2presenttheparametervaluesusedforsimulations andanalysisofthemodel. Assuming no cross-reactive responses (σ ,σ 0), the dynamics of viruses and T cells for the 2 4 = caseswithoutantibodyeffect(a 0)andwithantibodyeffect(a 10)areshowninFig.2(iandii), = = MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 7of17 TABLE1 Parameters for the dynamics of B cells and antibody effect used in the model simulations (2.1).WeusemanyparametersfromPathSim,wheretheratesareestimatedandgiveninaunitofper6 min(Shapiroetal.,2008)andconvertthemintotheunitofperminute Parameter Description Value Value Reference d TurnoverrateofnaiveBcells 1/6000 min 1 (Shapiroetal.,2008) 1 − μ Bcellinfectionrateper 3.3 10 10 min 1virus 1 (Shapiroetal.,2008)† Eb − − − × epithelialcellvirus μ Bcellinfectionrateper μ /100 min 1virus 1 (Hutt-Fletcher,2005) Bb Eb − − B-cellvirus D ρ Proliferationfactor 2 Nounit (Shapiroetal.,2008) o w d Deathrateoflatentlyinfected 1/11520 min 1 (Shapiroetal.,2008) n 2 − lo Bcells ad e c gRoaitnegoifnltaotemntelmyoinryfescttaegdecells 0.001 min−1 (Shapiroetal.,2008)‡ d from k2 Rateoflatentlyinfected 3.8×10−8 min−1cell−1 (Shapiroetal.,2008)§ http r RBacteellosfkreilalecdtivbaytiTonceolflslytic 8.3 10 5 min 1 (Shapiroetal.,2008) ://im − − a × m infectionfromlatentinfection m s Regulationfactorof 2 Nounit (Macallanetal.,2005) b.o x memoryBcells fo d4 Deathrateoflyticallyinfected 1/4320 min−1 (Shapiroetal.,2008) rdjo cellsduetovirusesburstingout urn k4 Rateoflyticallyinfected 7.6×10−8 min−1cell−1 (Shapiroetal.,2008)§ als.o BcellskilledbyTcells rg a Thestrengthofantibodyeffect Variable(0–40) Nounit a/ t U A Levelofawhereantibodyeffect 10 Nounit n ishalfmaximal ive λ Maximallevelofantibodyeffect 32 Nounit (Turketal.,2006)¶ rsity onepithelialcellinfection of U †Probabilityofvirusandcellencounterperminutemultipliedbyprobabilityofinfectionanddividedbythenumberof tah o v‡Wiruesetask(e≈th1i0s7to).bethesamerateastheestimationof0.1%oflymphocytesleavingtheWaldeyer’sringperminute. n Jan n§PumrobbearboilfitTyio(fly1m04p)h.ocyteencounterperminutemultipliedbytheprobabilitythatTi killsitstargetanddividedbythe uary 1 ¶Estimatedfro≈mlimiteddatagiveninaninvitrostudy(Borza&Hutt-Fletcher,2002). 8, 2 0 1 2 respectively.Theantibodyeffectgreatlyincreasesthenumberofvirusesbeingproduced,withmostof thisincreasecomingfromepithelialcellviruses.ElevatednumberofTcellsagainstvirallyticproteins areinducedduringprimaryinfection. 3. ApplicationtoIM EBVinfectioninchildrenofyoungageisusuallyasymptomatic.Adolescentsandyoungadultsinfected with EBV may develop flu-like symptoms referred to as IM. These symptoms result from a massive T-cell response to EBV a few weeks after the initial viral infection that can last from a few weeks to severalmonths(Cohen,2005).TheT-cellresponsesagainstvirallatentproteinsaregenerallysmallerin 8of17 G.T.HUYNHANDF.R.ADLER TABLE2 Parametersforthedynamicsofepithelialcells,virusandT-cellresponsesusedinthemodel simulations(2.1) Parameter Description Value Unit Reference d Turnoverrateofepithelialcells 1/6000 min 1 (Shapiroetal.,2008)† e − μ Epithelialcellinfectionrate 3 10 11 min 1virus 1 (Shapiroetal.,2008)‡ Be − − − × perB-cellvirus μ Epithelialcellinfectionrate μ /5 min 1virus 1 Hutt-Fletcher(2005) Ee Be − − perepithelialcellvirus γ Deathrateofinfectedepithelial 1/6000 min−1 Dow cellsduetovirusesburstingout (Shapiroetal.,2008)§ n lo ndσvj VDFriearaactlthiborunartsoetfoseiffzfveeicrutosrcellsactivated Var1ia1/b20l10e60(00–1) virNmuosi∙ncu−enl1ilt−1 SShhaappiirrooeettaall..((22000088)) aded from fromcross-reactivememoryTcells h ttp m FfraocmtomroefmfoasryterTrceespllosnse 5 Nounit Kedl&Mescher(1998) ://im a φ2 RateofT-cellactivation 1.95 10−5 min−1 Shapiroetal.(2008)¶ mm againstlatentinfection × b.o φ4 RagaatienostflTy-tcicelilnafcetcitviaotnion 4.48×10−5 min−1 Shapiroetal.(2008)¶ xfordjo θ2 RateofT-cellproliferation 3.25 10−5 min−1 Shapiroetal.(2008)k urn × a againstlatentinfection ls .o θ4 RagaatienostflTy-tcicelilnpfreocltiifoenration 3.25×10−5 min−1 Shapiroetal.(2008) at Urg/ K Numberofinfectedcellswhen 105 Cell Jones&Perelson(2005) n iv T-cellactivationishalfmaximal ers δ DeathrateofTcells 1/156000 min−1 Shapiroetal.(2008) ity o †Estimated,takentobethesameasd1. f Uta ‡EstimatedtakentobelessthanμEb(Turketal.,2006). h o §Estimatedtakentobelessthand4(Borza&Hutt-Fletcher,2002). n J ¶kPPrroobbaabbiilliittyyooffllyymmpphhooccyytteeeennccoouunntteerrppeerrmmiinnuutteemmuullttiipplliieeddbbyytthheepfrreoqbuaebnilciytyooffcTeliladcitviivsaitoinon(ebvyerByi8,–w1h2erhe).i=2or4. anuary 1 8 , 2 0 magnitudethantheT-cellresponsesagainstvirallyticproteinsduringtheacutephaseofIM.Theacute 12 phase is followed by convalescence and eventually a virus carrier state where the CD8 population + resolvestoalevelcomparabletothatinasymptomaticcarriers(Hislopetal.,2007). Weusenumericalsolutionsofourmodeltoinvestigatethethreehypothesesforthehighprevalence ofIMinteenagersandyoungadults:salivaandantibodyeffects,cross-reactiveT-cellresponsesandthe initialviralload.ThetotalnumberofTcells(bothspecificandcross-reactiveones)andthelyticT-cell ratioatthepeakofinfectionareusedasthetwokeymeasurementsofIM.ThelyticT-cellratioisthe ratiobetweeneffectorTcellsrespondingagainstlyticinfectionandeffectorTcellsrespondingagainst latentinfection,(T T )/(T T ).Awiderangeofvaluesofthesetwomeasurementshasbeen 4 4C 2 2C + + observedinIMpatients.Individualepitoperesponsesagainstlatentandlyticinfectionscanaccountfor 0.1–5%and1–40%ofthetotalCD8 T-cellpopulation,respectively(Hislopetal.,2007). + MATHEMATICALMODELLINGTHEAGEDEPENDENCEOFEBV 9of17 D o w n lo a d e d fro m h ttp ://im a m m b .o x fo rd FIG.2.DynamicsofvirusesandTcellsinthecaseofnocross-reactiveT-cellresponses(σj 0).(i)Withoutantibodyeffect jou (a 0).(ii)Withantibodyeffect(a 10).Theinsetsshowthelevelofpersistentvirusforthe=twocases.Parametervaluesused rn are=showninTables1and2. = als.o rg a/ 3.1 Antibodyeffects t U n iv Race, sex and age are at least in part responsible for individual differences in antibody responses e rs (Buckley & Dorsey, 1971; Childers et al., 2003; Jafarzadeh et al., 2008), which may influence the ity o outcomes of EBV infection. Titers of antibody responses specific to EBV viral capsid antigen, IgA f U andIgG,havebeenobservedtoincreasewithageandIgAattainsitshighestlevelduringtheonsetof ta h diseasewithinIMpatients(Edwards&Woodroof,1979;Oberenderetal.,1986).Furthermore,individ- on J ualsareexposedtomorepathogensastheyage.EBVinfectioninyoungadultsmayactivateantibody an u responses that are specific to other viruses but cross-reactive to EBV. As IgG and IgA responses to ary EBVglycoproteinscanenhancethelyticinfectionofepithelialcells,theprobabilityofgettingIMmay 18 increasewithage. , 20 1 To examine this hypothesis with our model, we vary the strength of the antibody effect (a) and 2 studyitsinfluenceonthetotalnumberofTcellsandthelyticT-cellratio(Fig. 3)measuredatthepeak of infection. The total number of T cells increases with the level of a but then decreases when a is large. At high levels of antibody response, infection of B cells is strongly suppressed while the effect on enhancement of lytic infection of epithelial cells saturates, leading to a decreased total number of Tcells(Fig.3(i))andincreasedlyticT-cellratio(Fig.3(ii)). 3.2 Cross-reactiveT-cellresponses Massive expansion of CD8 T cells responding to EBV causes the symptoms of IM (Silins et al., + 2001). It has been proposed that the high susceptibility of teenagers and young adults to IM may be 10of17 G.T.HUYNHANDF.R.ADLER D o w n atFehvtIeGapla.euba3ask.tee:Andrncaaettitibootohfbdeceyrptoweesafesfk-eerncoetafsthcionteinfvneetcuhTtmeiocbtnoee.tlralPsloan(frσuaTmmjc=ebeteelrl0rs)ov.afa(gTliau)iecTnseoslattlasrlley(ntTsiuh2cmo+iwnbfTneer2cicontif+oTCnaTbD(4lT8e+4s+)1TTa4ancncd)edaltlh2nse.dantthutehmelbypeteircaokTf-ocTfeilcnlefrlealcstitoaiog(na(.iTn(4isit+)lTaTth4eecn)lt/yi(tniTcf2eTc+-tcioTenl2lc(r)Ta)2tii)on, loaded fro m h ttp duetoamorecomplexmemoryCD8repertoirethaninyoungchildren.Asindividualsage,thememory ://im CD8 repertoire gets more complex due to exposure to different pathogens. Adolescents infected with a m EBV may recruit a large number of cross-reactive memory T cells previously created in response to m b otherviralinfections(Rickinson&Kieff,1996).Infact,ithasbeenshownthatmemoryCD8+ Tcells .oxfo specific to influenza virus can be activated and respond to stimulation by EBV lytic proteins ( Clute rd etal.,2005).Boththemagnitudeandtheefficiencyofcross-reactiveTcellsinkillinginfectedcellsmay jou rn contributetotheetiologyofIM.Thelevelofcross-reactivememoryTcellcanincreasewithage.These a ls memorycellsmaybefasteratactivationandproliferationcomparedtonaiveTcells(Veiga-Fernandes .o rg etal.,2000)butlessefficientincontrollingtheinfection( Thorley-Lawson,2005). a/ AlargefractionofCD8 TcellscreatedduringthecourseofIMrespondtolyticinfection(5–50% t U + n comparedto1–3%forTcellsrespondingtolatentinfection)(Callanetal.,1998;Hislopetal.,2002). ive rs SinceEBVhasmanymorelyticgenesthanlatentgenes(Robertson,2005),itislikelythattherearemore ity cross-reactiveTcellstoEBVlyticinfectionthantolatentinfection.Wefirstassumecross-reactionof of U onlyT-cellresponsesagainstlyticinfection.Toaddressthisassumptionwithourmodel,wesetσ2 0 ta = h andconsidervfi edifferentvaluesof σ4,0,0.3,0.6,0.8and1.Asσ4increases,thefractionoflyticT-cell on Tre-scpeollnrseespcoonmsien;galflrloymticcTrocsse-lrlseaacrteivceromsse-mreoarcytivTe.cells increases. At σ4 = 1, there is no specific lytic Janua ry To facilitate comparison with the antibody effect (Fig. 3), we present the effects of cross-reactive 1 8 T cells on the development of IM using similar plots, with vfi e curves in each representing different , 2 0 valuesofthelevelofcross-reactivelyticTcells(σ4)(Fig.4).Thisfigurealsoillustratestheimpactof 12 χ , the efficiency of cross-reactive T cells in killing lytically infected cells, on the two measurements 4 ofIM.Acrossalllevelsofantibodyeffects(a),theincreaseinσ greatlyelevatesthetotalnumberof 4 T cells and the lytic T-cell ratio. This effect, however, diminishes as χ increases. At χ 1, cross- 4 4 = reactivelyticTcellsareasefficientasspecificTcellsinkillinginfectedcells.Infact,duetotheirfaster response,cross-reactiveTcellsreducetheoverallT-cellresponsesandtheprobabilityofIM. Wenowaddthepossibilityofcross-reactiveT-cellresponsesagainstlatentinfection.Figure5shows the effects of this addition on the two measurements of IM. For each level of σ , we set σ 0.2σ 4 2 4 = toassumelowerlevelsofcross-reactiveTcellsagainstlatentinfectioncomparedtolyticinfection.We analysed and observed only minimal impacts of variation in the efficiency of cross-reactive T cells in killinglatentlyinfectedcells(χ )ontheresults.Wethusfix χ 0.5forthisanalysis.Incomparison 2 2 =
Description: