ebook img

Fuzzy Sets Methods in Image Processing and Understanding: Medical Imaging Applications PDF

311 Pages·2023·6.968 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy Sets Methods in Image Processing and Understanding: Medical Imaging Applications

Isabelle Bloch Anca Ralescu Fuzzy Sets Methods in Image Processing and Understanding Medical Imaging Applications Fuzzy Sets Methods in Image Processing and Understanding Isabelle Bloch • Anca Ralescu Fuzzy Sets Methods in Image Processing and Understanding Medical Imaging Applications IsabelleBloch AncaRalescu SorbonneUniversitè,CNRS,LIP6 DepartmentofComputerScience Paris,France UniversityofCincinnati,ML0030 Cincinnati,OH,USA LTCI,TélécomParis InstitutPolytechniquedeParis Palaiseau,France ISBN978-3-031-19424-5 ISBN978-3-031-19425-2 (eBook) https://doi.org/10.1007/978-3-031-19425-2 ©SpringerNatureSwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland ToDanandStephan AncaRalescu Acknowledgments Isabelle Bloch’s work on fuzzy sets started in the early 1990s with fuzzy mathe- maticalmorphology,whichwasacompletelynewtopicbothinimageanalysisand infuzzysetstheory,andwiththefusionofimageinformation.Shewarmlythanks Henri Maître for his support and encouragement to investigate research tracks out ofthemainstreamsincethen. SheisalsogratefultoDidierDuboisandHenriPradefortheirpositivefeedback andenlighteningdiscussionsduringmanyworkshopsandconferences.Seeingher workappreciatedbythesetwoprominentresearcherswasalwaysagreatmotivation tocontinueexploringnewideas. ReadingthepapersbyLotfiZadehwasagreatsourceofinspiration,inparticular toreallyseefuzzysetsassetsinthespatialdomain.Then,withtheaimofexploiting expert knowledge to help guiding segmentation and recognition in images, in particularinthefieldofmedicalimaging,sheinvestigatedthefieldofknowledge- basedimageunderstanding,anditbecamesoonobviousthatspatialrelationshadto playanimportantrole.However,expertknowledgeisoftenexpressedinalinguistic way, and for several relations, no satisfactory mathematical definitions existed. This led her to work on proposing fuzzy models of such relations, mostly based on mathematical morphology. She benefitted from a sabbatical stay at Berkeley (October–November 1995 and January 1997) to work in this direction with Mori Anvari.EnlighteningdiscussionsduringseminarschairedbyLotfiZadehonvarious subjects related to the theory of fuzzy sets and the applications thereof, and other nice discussions with several persons of his team, certainly encouraged her to continue to develop this research line. Although no one was working in the field ofimageunderstandingandspatialreasoning,shecouldgetinspirationfromthese seminarsanddiscussions.ShethanksLotfiZadehandMoriAnvarifortheirwarm hostingduringhersabbaticalperiodatBerkeley,andthe“FondsFrance-Berkeley” forthefinancialsupportofthissabbatical. ShewouldliketothankallthePhDcandidates andcolleagues withwhompart oftheworkpresentedinthisbookwasdone,asacknowledgedbythejointpapers mentionedinthebibliography. vii viii Acknowledgments Anca Ralescu’s encounter with fuzzy sets and fuzzy logic goes back to 1972 whenshewasastudentinMathematicsattheUniversityofBucharestRomania,and herclassmateandhusband,DanRalescu,wasinvitedtocollaborateonafuzzysets project.Theresultofthatprojectwastobetheclassicalbookonfuzzysystemsand applications coauthored by C.V. Negoita and D.A. Ralescu. Although students in mathematicsinRomaniahadheardoflogicsotherthantheclassicalBooleanlogic (thankstothehighlyinspirationalprofessorGrigoreMoisil),itwasveryexcitingto hearanewtheoryofuncertainty. Anca’sfirstworkinthefieldoffuzzysetscamemuchlater,afterobtainingher PhDinMathematics,withthespecialtyinProbabilityTheory,atIndianaUniversity Bloomington.In1983,shewasappointedasAssistantProfessorintheDepartment ofMathematicalSciencesattheUniversityofCincinnati. ShewasgreatlyinfluencedbyProfessorLotfiZadehwhomshehadmetin1976, especially by his work on linguistic, imprecise quantifiers. Her first works were ontherepresentationofrulesinvolvingsuchquantifiers.Frequentdiscussionswith professorZadeh,whomshevisitedoftenattheUniversityofCalifornia,Berkeley, and who also visited the University of Cincinnati, contributed a great deal to the directionshetookinherresearch. FollowingastayoffiveyearsinJapan,firstattheGraduateSchooloftheTokyo InstituteofTechnologyasguestofProfessorMichioSugeno(famousforhiswork on fuzzy control), and then at the Laboratory for International Fuzzy Engineering Research (LIFE), mentored by Professor Toshio Terano, her interests crystalized around the problem of image understanding. In particular, she was interested in definingimageunderstandingastheabilitytoverballydescribetheimagecontents. InchargeoftheImageUnderstandingGroupatLIFE,withhercolleaguesthere,she contributed to a new definition of spatial relations, to their high-level description compatible with the way humans describe them. Having read some of the papers writtenbyDr.IsabelleBloch,shecontactedher,andtheymetin1994.Sincethen, they have collaborated or exchanged ideas in the domain of image understanding andapplications,mostrecentlyinconnectionwiththeprojectofwritingthisbook. The two authors had many discussions and joint works, in particular during Anca’svisitstoParis,almosteveryMayforseveralyears,whichledtothewriting of this book. Anca is grateful to Isabelle for this collaboration. They both express theirwarmthankstoSpringerandtheeditorsfortheirsupport. Contents 1 Introduction .................................................................. 1 1.1 FuzzySetsandImageUnderstandingUnderImprecision ............ 1 1.1.1 SourcesofImprecision......................................... 1 1.1.2 AdvantagesandUsefulnessofFuzzySets..................... 2 1.1.3 SemanticGap ................................................... 3 1.1.4 AShortReviewofExistingBooks ............................ 3 1.2 Representations ......................................................... 4 1.3 LowLevel—Clustering,Enhancement,Filtering,EdgeDetection... 5 1.4 IntermediateLevel ...................................................... 6 1.5 HigherLevel............................................................. 7 1.5.1 RepresentationsofStructuralInformation..................... 7 1.5.2 Fusion ........................................................... 8 1.5.3 SceneUnderstanding ........................................... 9 1.6 EmergingTopics ........................................................ 9 1.6.1 MiningandRetrieval ........................................... 9 1.6.2 TowardsBipolarity.............................................. 10 1.6.3 TowardsMoreInteractionsBetweenKnowledgeand ImageInformation.............................................. 10 1.6.4 DeepNeuro-FuzzySystems.................................... 11 References..................................................................... 11 2 Preliminaries ................................................................. 19 2.1 ImprecisioninImagesandRelatedKnowledge....................... 19 2.2 BasicDefinitionsofFuzzySetsTheory................................ 21 2.2.1 FuzzySets....................................................... 21 2.2.2 SetTheoreticalOperations:OriginalDefinitionsof L.Zadeh......................................................... 23 2.2.3 StructureandTypesofFuzzySets............................. 24 2.2.4 α-Cuts........................................................... 24 2.2.5 Cardinality ...................................................... 25 2.2.6 Convexity ....................................................... 26 ix x Contents 2.2.7 FuzzyNumber .................................................. 26 2.3 MainOperatorsonFuzzySets ......................................... 29 2.3.1 FuzzyComplementation ....................................... 29 2.3.2 TriangularNormsandConorms ............................... 30 2.3.3 MeanOperators................................................. 35 2.3.4 SymmetricSums................................................ 37 2.3.5 AdaptiveOperators............................................. 38 2.3.6 LogicalConnectives............................................ 39 2.4 LinguisticVariable...................................................... 39 2.4.1 Definition........................................................ 39 2.4.2 ExampleofLinguisticVariable................................ 40 2.4.3 Modifiers........................................................ 40 2.5 TranslatingaCrispOperationintoaFuzzyOperation................ 42 2.5.1 ExtensionPrinciple............................................. 42 2.5.2 CombinationofResultsonα-Cuts............................. 45 2.5.3 TranslatingBinaryTermsintoFunctionalOnes............... 47 2.5.4 Comparison ..................................................... 49 2.6 SummaryoftheMainNotations ....................................... 50 References..................................................................... 51 3 FuzzySpatialObjects........................................................ 53 3.1 FuzzySetsintheSpatialDomain...................................... 54 3.2 SetTheoreticalOperations ............................................. 55 3.2.1 DegreeofIntersection.......................................... 55 3.2.2 DegreeofUnionandCovering................................. 59 3.2.3 DegreeofInclusion............................................. 60 3.2.4 DegreeofEquality.............................................. 64 3.3 Topology:Neighborhood,Boundary,andConnectednessof aFuzzySet .............................................................. 65 3.3.1 FuzzyNeighborhood ........................................... 65 3.3.2 BoundaryofaFuzzySet ....................................... 66 3.3.3 Connectedness .................................................. 67 3.4 FuzzyGeometry......................................................... 67 3.4.1 FuzzyPointsandLines......................................... 67 3.4.2 FuzzyRectanglesandFuzzyConvexPolygons............... 70 3.4.3 FuzzyDisks..................................................... 72 3.4.4 FuzzyGeometricalMeasures .................................. 73 3.5 FuzzyGeometricTransformations..................................... 81 3.5.1 TransformationofaFuzzySetbyaCrispOperation ......... 81 3.5.2 TransformationofaFuzzySetbyaFuzzyOperation ........ 82 References..................................................................... 83 4 FuzzyMathematicalMorphology.......................................... 85 4.1 LatticeStructureofF................................................... 85 4.2 AlgebraicOperators..................................................... 86 4.3 StructuringElementsandBasicMorphologicalOperators ........... 88 Contents xi 4.4 AnExampleinMedicalImaging....................................... 92 4.5 TowardsaFuzzyMathematicalMorphologyToolbox................ 94 4.5.1 NeighborhoodandBoundaryfromFuzzyDilation andErosion...................................................... 94 4.5.2 FuzzyMorphologicalFilters................................... 95 4.5.3 ConditioningandFuzzyGeodesicOperators ................. 97 4.5.4 FuzzySkeletonandSkeletonbyInfluenceZones............. 101 4.5.5 Fuzzy Median, Application to Interpolation BetweenFuzzySets ............................................ 112 4.5.6 Extensions....................................................... 115 References..................................................................... 115 5 Fusion ......................................................................... 121 5.1 Definitions............................................................... 121 5.2 FusionSystemsandArchitecturesTypes.............................. 125 5.3 FuzzyModelinginFusion.............................................. 126 5.4 DefiningandEstimatingMembershipFunctions...................... 127 5.5 FuzzyCombination ..................................................... 129 5.6 DecisioninFuzzyFusion............................................... 132 5.7 ExploitingSpatialInformation......................................... 133 5.8 IllustrativeExamples.................................................... 134 References..................................................................... 135 6 SpatialRelations ............................................................. 137 6.1 SetTheoreticalandTopologicalRelations............................. 137 6.1.1 Adjacency....................................................... 138 6.1.2 FuzzyRegionConnectionCalculus............................ 140 6.2 DistancesBetweenImageRegionsorObjects ........................ 142 6.2.1 Representations................................................. 142 6.2.2 ComparisonofMembershipFunctions........................ 143 6.2.3 CombinationofSpatialandMembershipComparisons ...... 147 6.2.4 DiscussionandExamples ...................................... 151 6.3 FuzzyHammingDistance .............................................. 154 6.4 DirectionalRelations.................................................... 160 6.4.1 FuzzyRelationsDescribingRelativePosition ................ 160 6.4.2 CentroidMethod................................................ 161 6.4.3 HistogramofAngles:CompatibilityMethod ................. 161 6.4.4 AggregationMethod............................................ 162 6.4.5 HistogramofForces............................................ 162 6.4.6 ProjectionBasedApproach .................................... 163 6.4.7 MorphologicalApproach....................................... 164 6.4.8 DiscussionandExamples ...................................... 165 6.5 ComplexRelations:Surround,Between,Along,Across, Parallel,Aligned ........................................................ 168 6.5.1 Surround......................................................... 168 6.5.2 Between......................................................... 169

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.