ebook img

Fuzzy Sets in Approximate Reasoning and Information Systems PDF

514 Pages·1999·13.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy Sets in Approximate Reasoning and Information Systems

FUZZY SETS IN APPROXIMATE REASONING AND INFORMATION SYSTEMS THE HANDBOOKS OF FUZZY SETS SERIES Series Editors DidierDubois and HenriPrade IRIT, UniversitePaulSabatier, Toulouse, France FUNDAMENTALSOFFUZZYSETS,editedbyDidierDuboisandHenriPrade MATHEMATICSOFFUZZYSETS:Logic, Topology,andMeasureTheory,edited byUlrichHohleandStephenErnestRodabaugh FUZZY SETS IN APPROXIMATE REASONING AND INFORMATION SYSTEMS,editedbyJamesC. Bezdek,DidierDuboisandHenriPrade FUZZYMODELSANDALGORITHMSFORPATTERNRECOGNITIONAND IMAGEPROCESSING,byJamesC. Bezdek, JamesKeller, Raghu Krisnapuram andNikhilR. Pal FUZZY SETSINDECISIONANALYSIS,OPERATIONSRESEARCHAND STATISTICS,editedbyRoman Slowinski FUZZYSYSTEMS: ModelingandControl, editedbyHungT. NguyenandMichio Sugeno PRACTICALAPPLICATIONSOFFUZZYTECHNOLOGIES,editedbyHans JUrgenZimmermann FUZZY SETS IN APPROXIMATE REASONING AND INFORMATION SYSTEMS edited by c. James Bezdek University o/West Florida Didier Dubois lRIT, CNRS & University o/Toulouse III and Henri Prade IRIT, CNRS & University o/Toulouse III . . , ~ SPRINGER SCIENCE+BUSINESS MEDIA, LLC Library of Congress Cataloging-in-Publication Data Fuzzy sets in approximate reasoning and information systems / edited by James C. Bezdek, Didier Dubois and Renri Prade. p. cm. -- (The Randbooks of fuzzy sets series ; FSRS 5) Includes bibliographical references. ISBN 978-1-4613-7390-2 ISBN 978-1-4615-5243-7 (eBook) DOI 10.1007/978-1-4615-5243-7 1. Expert systems (Computer science) 2. Reasoning. 3. Fuzzy sets. 1. Bezdek, James C., 1939-. II. Dubois, Didier. III. Prade, Renri M. IV. Series. QA76.76.E95F8866 1999 006.3 3--dc21 99-16664 I CIP Copyright © 1999 by Springer Science+Business Media New York Originally published by Kluwer Academic Publishers in 1999 Softcover reprint of the hardcover 1s t edition 1999 AlI rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo copying, recording, or otherwise, without the prior written permission of the publisher, Springer Science+Business Media, LLC Printed an acid-free paper. Contents Series Foreword xi ContributingAuthors xiii Introduction DidierDubois, HenriPrade, JamesBezdek PARTI REASONING 1 Fuzzy Sets and Possibility Theory in Approximate and Plausible Reasoning 15 BernadetteBouchon-Meunier, DidierDubois, L1uisGodoandHenriPrade 1.1 Introduction 15 1.1.1 The Emergence of Fuzzy Set-Based Approximate Reasoning 16 1.1.2 Organization oftheChapter 17 1.2 ARefresheron PossibilityTheoryar:ld FuzzyConnectives 18 1.2.1 AShortCourseon PossibilityTheory 18 1.2.2 Fuzzy Connectives: Negations, Conjunctions and Disjunctions 25 1.2.3 FuzzyImplications 27 1.3 Representationof FuzzyStatements 31 1.3.1 Linguistic Variables 32 1.3.2 LinguisticModifiers 33 1.3.3 Modelling ElementaryFuzzyStatements 35 1.3.4 Compound FuzzyStatements 39 1.4 RepresentationofQualifiedandQuantified FuzzyStatements 43 1.4.1 FuzzyTruth-Values 43 1.4.2 Truth QualifiedStatements 46 1.4.3 Graded Truth Versus Degrees of Uncertainty: The Compositionality Problem 48 1.4.4 Certaintyand PossibilityQualification 51 1.4.5 ProbabilityQualification 54 1.4.6 FuzzyQuantifiedStatements 55 vi APPROXIMATE REASONING AND INFORMATIONSYSTEMS 1.5 The RepresentationofFuzzyRules 59 1.5.1 TheNon FuzzyCase: RelationalandMetaLevelViews 59 1.5.2 Fuzzy Rules: Implication-BasedModels 61 1.5.3 Fuzzy Rules: Conjunction-Based Models 64 1.5.4 MetalevelModelsofFuzzyRules 66 1.5.5 Comparison BetweenFuzzy Rules 66 1.5.6 OtherRepresentational Issueson Fuzzy Rules 71 1.6 Basic Principlesof FuzzyInference 74 1.6.1 CombinationandProjection Principles 74 1.6.2 GenericFuzzyReasoningTechniques 77 1.7 ElementaryFuzzyInference:TheGeneralizedModusPonens 84 1.7.1 BasicFormsoftheGeneralizedModusPonens 84 1.7.2 PropertiesoftheGeneralizedModusPonens 86 1.7.3 RetrievingModusPonensasaParticularCase 88 1.7.4 GeneralizedModusPonensand FuzzyTruth-Values 91 1.7.5 Inferencewith FuzzyMeta-Rules 93 1.8 Systemsof FuzzyRules 96 1.8.1 CompoundCondition Parts 96 1.8.2 Systemsof Parallel Rules 97 1.8.3 Chaining 105 1.8.4 ConsistencyCheckingand Redundancy Elimination 107 1.9 InferencewithCertainty FactorsandApproximate Reasoning 110 1.9.1 TheCertaintyFactorApproach 110 1.9.2 CertaintyFactorsandMultiple-ValuedLogic 112 1.9.3 APossibility-TheoreticViewofCertainty Factors 116 1.10 Specialized Formsof FuzzyDeductiveReasoning 118 1.10.1 ADeductiveApproachtoInterpolativeReasoning 118 1.10.2 Deductive SimilarityReasoning 122 1.10.3 PossibilisticLogic 125 1.10.4 TheSemanticAgreementBetween Many-Valued Logics, Uncertain, andApproximate Reasoning 127 1.10.5 ReasoningaboutPreferences 129 1.10.6 FuzzyTemporal Reasoning 133 1.10.7 FuzzyQualitative Reasoning 136 1.11 FuzzySet-BasedPlausible Reasoning 139 1.11.1 Plausible Similarity-BasedReasoning 139 1.11.2 Reasoningwith FuzzyQuantifiers 143 1.11.3 NonmonotonicReasoning 146 1.11.4 FuzzyCausal Reasoning 154 1.12 Conclusion 160 References 162 2 Weighted InferenceSystems 191 Vi/em Novak 2.1 Introduction 191 Contents vii 2.2 Formal Inferenceand its Interpretation 193 2.3 Truth ValuesinMany-ValuedLogic 196 2.4 Many-Valued, Fuzzyand Possibilistic Logic 199 2.4.1 Historical Remarks 199 2.4.2 Lukasiewicz Logic 201 2.4.3 FuzzyLogicin NarrowSense 204 2.4.4 MonoidalLogicasAggregatingView 212 2.4.5 PossibilisticLogic 215 2.4.6 Some Other Logic Kinds of Weighted Reasoning Systems 223 2.5 Rule-Based InferenceSystems 225 2.6 FuzzyLogic Programming 227 2.6.1 TheoreticalAspectsof FuzzyLogic Programming 227 2.6.2 Attemptsat Fuzzy PROLOG 233 2.7 SummaryandConclusion 234 References 235 3 ClosureOperatorsinFuzzysetTheory 243 LoredanaBiacinoandGiangiacomoGerla 3.1 Introduction 243 3.2 ClosureOperatorsinaLattice 244 3.3 AbstractLogics 246 3.4 ContinuityforAbstractLogics 247 3.5 Step-by-stepDeduction Systems 247 3.6 LogicalCompactness 249 3.7 Basic Notionsin FuzzySetsTheory 250 3.8 Abstract FuzzyLogic 253 3.9 Pavelka'sLogic 256 3.10 LogicalCompactnessand Ultraproducts 259 3.11 An extension PrincipleforDeductionOperators 261 3.12 ExtendingCompactDeductionSystems 264 3.13 SimilarityLogic 266 3.14 Ying'sSimilarityLOgic 267 3.15 StratifiedFuzzylogic 269 3.16 GradedConsequence Relations 272 References 277 viii APPROXIMATE REASONING AND INFORMATION SYSTEMS PARTII LEARNINGAND FUSION 4 Learning FuzzyDecision Rules 279 BernadetteBouchon-MeunierandChristopheMarsala 4.1 Introduction 279 4.2 FuzzyDecision Rules 280 4.3 InductiveLearningofFuzzyRules 281 4.3.1 GeneralInductiveLearning Method 282 4.3.2 Fuzzy DecisionTrees 283 4.3.3 Fuzzy Prototypes 290 4.3.4 Determinationof Fuzzy Modalities 291 4.3.5 OtherMethodsofInductiveRuleConstruction 292 4.3.6 Applications of FuzzyInductiveLearning 292 4.4 Tuning FuzzyRules 293 4.4.1 SelfLeaming 294 4.4.2 UtilizationofaFuzzyModelofthe Process 294 4.4.3 Fuzzy Relational Equations 296 4.4.4 ClusteringMethods 297 4.4.5 Optimization 297 4.4.6 GeneticAlgorithms 298 4.5 Conclusion 299 References 299 5 Neuro-FuzzyMethodsin FuzzyRuleGeneration 305 DetlefNauckandRudolfKruse 5.1 Introduction 305 5.2 StructureLearning- Creating Fuzzy Rules 307 5.2.1 Cluster-OrientedApproachestoLearn Fuzzy Rules 308 5.2.2 Hyperbox-OrientedApproachestoLearn FuzzyRules 311 5.2.3 Structure-OrientedApproachesto Learn FuzzyRules 312 5.3 ParameterLearing- Adapting FuzzySets 315 5.3.1 Adapting FuzzySetsbyGradientDescent 316 5.3.2 Adapting FuzzySetswith ANFIS 318 5.3.3 Adapting FuzzySetsbySimpleHeuristics 320 5.4 Tuning Fuzzy RuleswithAdaptive Weights 327 5.5 Conclusions 331 References 332 6 MergingFuzzy Information 335 DidierDubois, HenriPradeand RonaldYager 6.1 Introduction 335 Contents ix 6.2 Information Fusion 337 6.2.1 Characteristicsofthe Information Fusion Problem 337 6.2.2 Some Limitations of a Pure Probabilistic Approach to Fusion 339 6.3 The Possibilistic RepresentationofIncompleteData 343 6.3.1 PossibilityTheory: ARefresher 343 6.3.2 BuildingPossibilityDistributions 345 6.4 The Fusionof PossibilityDistributions 350 6.4.1 BasicSymmetricCombination Modesinthe Possibilistic Setting 351 6.4.2 ExpectedFormal PropertiesofCombination Rules 356 6.5. Refined Fusion Modes 361 6.5.1 Assessmentofthe ReliabilityofSources 361 6.5.2 Fusionwith UnequallyReliable Sources 6.5.3 Adaptive Fusion 369 6.6 Fuzzy Estimation 373 6.6.1 Fuzzy Extension of EstimationTechniques 373 6.6.2 Constrained Merging 375 6.7 Possibilistic FusionUnderAPriori Knowledge 380 6.7.1 Revisionwith FuzzyInputs 381 6.7.2 MultisourceFusion underaPriori Knowledge 385 6.8 SyntacticCombinationof Logical Databasesin Possibilistic Logic 386 6.8.1 From Prioritized Logical Databases to Possibility Distributions 387 6.8.2 SyntacticCombination Modes 388 6.9 Conclusion 391 References 392 PARTIII FUZZYINFORMATION SYSTEMS 7 Fuzzy Databases 403 PatrickBose, BillB. Buckles, FrederickE. Petry, and 0. Pivert 7.1 Introduction 403 7.2 FuzzyQueryingin Relational Databases 404 7.2.1 Overviewof Relational Databases 405 7.2.2 RelationswithWeightedTuples 409 7.2.3 ModelingFuzzyQueries 409 7.2.4 FlexibleQueriesAgainstCrisp Databases 414 7.2.5 ARelational AlgebraforFuzzy Relations 416 7.2.6 SQU, anSQL-LikeFuzzyQueryLanguage 419 7.2.7 ImplementationAspectsandQuery Processing 422 7.2.8 Cooperative Answering 427 7.3 UncertaintyandIncompletenessin Relational Databases 428 7.3.1 Non PossibilisticApproachesto ImpreciseValues 429 x APPROXIMATE REASONING AND INFORMATION SYSTEMS 7.3.2 The PossibilisticModelforRelational Databases 432 7.3.3 Queriesinthe PossibilisticFramework 435 7.4 Similarityin Relational Databases 440 7.4.1 Introduction 440 7.4.2 Similarity Thresholds and Relational Algebra Operations 442 7.4.3 Redundancyand UniquenessProperties 443 7.4.4 Query Evaluation intheSimilarityBased Framework 446 7.4.5 Proximity-Based Models 447 7.4.6 ApplicationtoSecurity 448 7.5 DataIntegrityand Dependencies 452 7.6 OtherData Models 454 7.6.1 Fuzzy ExtensionsforEntity-RelationshipModels 454 7.6.2 ExtendedSemanticModel 455 7.6.3 NetworkDataModels 457 7.6.4 Object-Oriented Model 457 7.7 Conclusion 460 References 462 8 FuzzySetTechniquesinInformationRetrieval 469 DonaldH. Kraft, Gloria BordognaandGabriellaPas; 8.1 Introduction 469 8.2 Information Retrieval Models 472 8.3 FuzzyInformationRetrieval Models 474 8.3.1 Fuzzy ExtendedBoolean Models 475 8.3.2 Fuzzy KnowledgeBased IR Models 476 8.3.3 FuzzyAssociative Mechanisms 477 8.4 The FuzzyIndexingProcedure 477 8.4.1 Issuesin Indexingand Retrieval 477 8.4.2 Fuzzy RepresentationofStructuredDocuments 479 8.5 FuzzyQuerying 482 8.5.1 QueryWeights 483 8.5.2 AggregationOperators 487 8.6 Enhancing RetrievalThrough FuzzyAssociations 489 8.6.1 FuzzyThesauriforTerms 489 8.6.2 FuzzyClusteringforDocuments 492 8.7 Relevance Feedback 493 8.7.1 PreviousWorkson Relevance Feedback 494 8.7.2 Relevance FeedbackBasedon NaiveLearning 496 8.8 EvaluationofInformation RetrievalSystems 500 Summary 501 References 502

Description:
Approximate reasoning is a key motivation in fuzzy sets and possibility theory. This volume provides a coherent view of this field, and its impact on database research and information retrieval. First, the semantic foundations of approximate reasoning are presented. Special emphasis is given to the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.