ebook img

Fuzzy Dynamic Equations, Dynamic Inclusions, and Optimal Control Problems on Time Scales PDF

882 Pages·2021·5.275 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy Dynamic Equations, Dynamic Inclusions, and Optimal Control Problems on Time Scales

Svetlin G. Georgiev Fuzzy Dynamic Equations, Dynamic Inclusions and Optimal Control Problems on Time Scales Fuzzy Dynamic Equations, Dynamic Inclusions and Optimal Control Problems on Time Scales Svetlin G. Georgiev Fuzzy Dynamic Equations, Dynamic Inclusions and Optimal Control Problems on Time Scales SvetlinG.Georgiev FacultyofMathematics&Info SofiaUniversityStKlimentOhridski Sofia,Bulgaria ISBN978-3-030-76131-8 ISBN978-3-030-76132-5 (eBook) https://doi.org/10.1007/978-3-030-76132-5 MathematicsSubjectClassification:34A60,34N05,34A37,34B37 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thetheoryofdynamicequationshasmanyinterestingapplicationsincontroltheory, mathematical economics, mathematical biology, engineering, and technology. In somecases,thereexistsuncertainty,ambiguity,orvaguefactorsinsuchproblems, and fuzzy theory and interval analysis are powerful tools for modeling these equations on time scales. The aim of this book is to present a systematic account of recent developments; describe the current state of the useful theory; show the essentialunityachievedinthetheoryfuzzydynamicequations,dynamicinclusions, andoptimalcontrolproblemsontimescales;andinitiateseveralnewextensionsto othertypesoffuzzydynamicsystemsanddynamicinclusions. The book contains 16 chapters. Chapter 1 deals with fuzzy functions on time scales. We focus on a new class derivative and a new class integral of such fuzzy functions. The corresponding fundamental properties of the introduced derivative and integral are studied and discussed. In this chapter, we introduce the concept for shifts operators. They are defined shift almost periodic fuzzy functions and some of their properties are deduced. In Chap.2, certain classes linear fuzzy dynamic equations are considered, and we give formulas for their solutions. They are proved some results for existence and uniqueness of the solutions of some classes nonlinear fuzzy dynamic equations. The continuous dependence of the solutions of first order fuzzy dynamic equations on the initial data is investigated. Some comparison results are provided. The Lyapunov functional is introduced, and criteria for stability and exponential stability of the trivial solution of some classesnonlinearfuzzydynamicequationsareprovedbyusingit.InChap.3,some classeslinearsecondorderfuzzydynamicequationsareinvestigatedandformulas for their solutions are deduced. They are formulateds and proved some existence and uniqueness results. The continuous dependence of the solutions of second order fuzzy dynamic equations on the initial data is investigated. Some classes of BVPs for second order fuzzy dynamic equations are investigated and formulas for their solutions are given. In Chap.4, some basic results for periodic functions on the periodic time scales are formulated and proved. A phase space is built for fuzzy dynamic equations with infinite delays on the periodic time scales. By usingthemonotonemethods,wesystematicallyconsidertheexistenceofperiodic v vi Preface solutionsforthefuzzydynamicequationswithinfinitedelaysontheperiodictime scales, which generalize and incorporate, as special cases, some known results for fuzzy differential equations and fuzzy difference equations. In Chap.5, linear first order impulsive fuzzy dynamic equations on time scales are considered, and we deduce formulas for their solutions. In the chapter, some classes nonlinear first order impulsive fuzzy dynamic equations are investigated, and existence and uniqueness of their solutions are proved. We introduce the conception for stable trivial solution of some classes nonlinear first order impulsive fuzzy dynamic equations and some stability criteria are deduced. In Chap.6, the concept for Δ- measurable functions ontimescalesandΔ-Lebesgue integration ontimescalesis introduced.Inthechapter,someofthepropertiesoftheΔ-measurablefunctionsand the Δ-Lebesgue integral are deduced. The spaces L1(T) and the Sobolev spaces are introduced. The concept for absolutely continuous functions on time scales is establishedandacharacterizationofsuchfunctionsisprovided.Inthischapter,we introduceweaksolutionsandtheEulersolutionsforfirstorderdynamicequations on time scales and an analogue of the Gronwall inequality is formulated and proved. In Chap.7, some IVPs for first order dynamic inclusions are investigated. Some classes first order dynamic inclusions with nonlocal initial conditions are investigated for existence of solutions. In the chapter, BVPs for some classes first orderdynamicinclusionswithgeneralboundaryconditionsandperiodicboundary conditions are studied. Also, the dual time scales are introduced and a method for investigations for existence of solutions of first order dynamic inclusions via dualityisproposed.InChap.8,aperiodicboundaryvalueproblemforsecondorder dynamicinclusionsforexistenceofsolutionsisinvestigated.Inthechapter,m-point boundary value problem for second order dynamic inclusions is considered and some existence results are deduced. In Chap.9, some classes first order impulsive dynamicinclusionsareinvestigated.Theyareintroducedloweranduppersolutions for first order impulsive dynamic inclusions. They are deducted some existence results for some classes boundary value problems for different classes first order impulsivedynamicinclusions.InChap.10,thecontrollabilityandobservabilityof linearequationsandthebang-bangprincipleareinvestigated.Chapter11isdevoted on linear time optimal control. The existence of time-optimal controls and the maximum principle for linear time-optimal control are proven. Chapter 12 deals withthePontryaginmaximumprinciple.Adjointlineardynamics,variationsofthe control, simple control variations, and the free endpoint problem are investigated. Dynamic programming is introduced in Chap.13. The Hamilton-Jacobi-Bellman partial dynamic equations are deduced and the dynamic programming method is deduced.ThedynamicgamesareintroducedandtheIsaacsequationsarededuced. Chapter 14 is devoted on weak solutions and optimal control problems for some classeslinearfirstorderdynamicsystems.Nonlineardynamicequationsandoptimal control problems are investigated in Chap.15 and some necessary conditions for optimality are provided. In Chap.16, nonlinear integro-dynamic equations are investigatedandsomenecessaryconditionsforoptimalityarededuced. Preface vii The text material of this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated, displaying a wide variety of solutiontechniques. Theauthorwelcomessuggestionsfortheimprovementofthetext. Paris,France SvetlinG.Georgiev March2021 Contents 1 CalculusofFuzzyFunctions .............................................. 1 1.1 FirstTypeFuzzyDeltaDifferentiation.............................. 1 1.2 SecondTypeFuzzyDeltaDifferentiation........................... 63 1.3 OtherPropertiesofFirstTypeandSecondTypeFuzzy DeltaDifferentiation ................................................. 85 1.4 FirstTypeFuzzyDeltaIntegration.................................. 93 1.5 SecondTypeFuzzyDeltaIntegration............................... 108 1.6 ShiftOperators—Properties ......................................... 112 1.7 Complete-ClosedTimeScalesunderNon-translationalShifts..... 120 1.8 ShiftAlmostPeriodicFuzzyFunctions............................. 124 1.9 AdvancedPracticalProblems........................................ 131 1.10 NotesandReferences ................................................ 135 2 FirstOrderFuzzyDynamicEquations .................................. 137 2.1 LinearFirstOrderFuzzyDynamicEquations...................... 137 2.2 ExistenceandUniquenessofSolutions............................. 167 2.3 ContinuousDependenceoftheSolutionsofFirstOrder FuzzyDynamicEquationsontheInitialData ...................... 175 2.4 ComparisonResults.................................................. 176 2.5 StabilityCriteria...................................................... 184 2.6 ExponentialStability................................................. 192 2.7 AdvancedPracticalProblems........................................ 201 2.8 NotesandReferences ................................................ 203 3 SecondOrderFuzzyDynamicEquations................................ 205 3.1 LinearSecondOrderFuzzyDynamicEquations................... 205 3.2 Boundary Value Problems for Second Order Fuzzy DynamicEquations .................................................. 226 3.3 ExistenceandUniquenessofSolutionsofSecondOrder FuzzyDynamicEquations........................................... 239 3.4 Continuous Dependence of the Solutions of Second OrderFuzzyDynamicEquationsontheInitialData............... 248 ix x Contents 3.5 AdvancedPracticalProblems........................................ 252 3.6 NotesandReferences ................................................ 255 4 FunctionalFuzzyDynamicEquations ................................... 257 4.1 PeriodicPropertiesofTimeScales.................................. 257 4.2 ThePhaseSpace...................................................... 274 4.3 PeriodicSolutions.................................................... 290 4.4 AdvancedPracticalProblems........................................ 306 4.5 NotesandReferences ................................................ 308 5 ImpulsiveFuzzyDynamicEquations..................................... 309 5.1 LinearFirstOrderImpulsiveFuzzyDynamicEquations .......... 310 5.2 Existence of Solutions for First Order Nonlinear ImpulsiveFuzzyDynamicEquations-I ............................. 324 5.3 Existence of Solutions for First Order Nonlinear ImpulsiveFuzzyDynamicEquations-II............................. 337 5.4 StabilityoftheSolutionsofFirstOrderImpulsiveFuzzy DynamicEquations-I................................................. 350 5.5 StabilityoftheSolutionsofFirstOrderImpulsiveFuzzy DynamicEquations-II................................................ 353 5.6 AdvancedPracticalProblems........................................ 357 5.7 NotesandReferences ................................................ 359 6 TheLebesgueIntegration.Lp-Spaces.SobolevSpaces ................ 361 6.1 TheLebesgueDelta-Integral......................................... 361 6.2 AbsolutelyContinuousFunctions................................... 377 6.3 AlternativeWayforDefiningofLebesgueTypeMeasure andIntegrationoverT ............................................... 383 6.4 TheFundamentalTheoremofCalculus............................. 386 6.5 TheSpacesLp(T) ................................................... 390 6.6 SobolevTypeSpacesandGeneralizedDerivatives................. 393 6.7 WeakSolutionsofDynamicSystems ............................... 408 6.8 EulerSolutionsforDynamicEquations............................. 419 6.9 TheGronwallTypeInequality....................................... 423 6.10 Δ×B-MeasurableSet-ValuedFunctions.......................... 427 6.11 AdvancedPracticalProblems........................................ 433 6.12 NotesandReferences ................................................ 434 7 FirstOrderDynamicInclusions .......................................... 435 7.1 Existence and Approximations of Solutions of First OrderDynamicInclusions........................................... 435 7.2 ExistenceResultsforFirstOrderDynamicInclusions withNonlocalInitialConditions .................................... 455 7.3 ExistenceofSolutionsofFirstOrderDynamicInclusions withGeneralBoundaryConditions.................................. 471 7.4 ExistenceofSolutionsofFirstOrderDynamicInclusions withPeriodicBoundaryConditions................................. 489 Contents xi 7.5 TheDualTimeScales................................................ 500 7.6 ExistenceofSolutionsofFirstOrderDynamicInclusions viaDuality............................................................ 510 7.7 AdvancedPracticalProblems........................................ 511 7.8 NotesandReferences ................................................ 514 8 SecondOrderDynamicInclusions ....................................... 515 8.1 FixedPointResults................................................... 515 8.2 ExistenceResultsforSecondOrderDynamicInclusions.......... 522 8.3 ExistenceResultsforSecondOrderDynamicInclusions withm-PointBoundaryValueConditions .......................... 537 8.4 AdvancedPracticalProblems........................................ 548 8.5 NotesandReferences ................................................ 550 9 Boundary Value Problems for First Order Impulsive DynamicInclusions......................................................... 551 9.1 LowerandUpperSolutionsforFirstOrderImpulsive DynamicInclusions.................................................. 551 9.2 PeriodicBoundaryValueProblemsforFirstOrderLinear DynamicInclusionswithImpulses.................................. 563 9.3 Periodic Boundary Value Problems for First Order NonlinearDynamicInclusionswithImpulses-I .................... 574 9.4 Periodic Boundary Value Problems for First Order NonlinearDynamicInclusionswithImpulses-II ................... 601 9.5 ExtremalSolutionsofPeriodicBoundaryValueProblems forFirstOrderImpulsiveIntegro-DynamicInclusionsof MixedType........................................................... 609 9.6 MultiplePositiveSolutionsforFirstOrderImpulsive IntegralBoundaryValueProblems.................................. 631 9.7 AdvancedPracticalProblems........................................ 658 9.8 NotesandReferences ................................................ 660 10 Controllability,Bang–BangPrinciple.................................... 661 10.1 BasicDefinitions ..................................................... 661 10.2 ControllabilityofLinearEquations ................................. 668 10.3 Observability ......................................................... 684 10.4 Bang–BangPrinciple................................................. 695 10.5 AdvancedPracticalProblems........................................ 698 10.6 NotesandReferences ................................................ 699 11 LinearTime-OptimalControl............................................. 701 11.1 ExistenceofTime-OptimalControls................................ 701 11.2 TheMaximumPrincipleforLinearTime-OptimalControl........ 702 11.3 AdvancedPracticalProblems........................................ 714 11.4 NotesandReferences ................................................ 715

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.