ebook img

Fuzzy Clustering in the Analysis of Fourier Transform Infrared Spectra for Cancer Diagnosis PDF

214 Pages·2007·3.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy Clustering in the Analysis of Fourier Transform Infrared Spectra for Cancer Diagnosis

Fuzzy Clustering in the Analysis of Fourier Transform Infrared Spectra for Cancer Diagnosis by Xiao Ying Wang, BSc Thesis Submitted to the University of Nottingham for the degree of Doctor of Philosophy School of Computer Science and Information Technology September 2006 Table of Contents Table of Contents 1 Introduction .................................................................................................... 1 1.1 Background and Motivation ............................................................................. 1 1.2 Aims of this project .......................................................................................... 6 1.3 Overview of the Thesis..................................................................................... 7 2 Literature Review......................................................................................... 11 2.1 Clustering Techniques .................................................................................... 11 2.2 Cluster Validity .............................................................................................. 31 2.3 Auto Clustering .............................................................................................. 38 2.4 Cluster Merging.............................................................................................. 46 2.5 Clustering in FTIR Spectroscopy ................................................................... 49 2.6 Summary......................................................................................................... 61 3 Medical Background .................................................................................... 63 3.1 Introduction .................................................................................................... 63 3.2 Instrumentation............................................................................................... 67 3.3 Sample Preparation and Data Collection........................................................ 71 3.4 Data Pre-processing........................................................................................ 73 3.5 Summary......................................................................................................... 74 i Table of Contents 4 A Comparison of Hierarchical, K-Means and Fuzzy C-Means Clustering of Oral Cancer Cells ............................................................... 76 4.1 Introduction .................................................................................................... 76 4.2 Oral Cancer Datasets Description................................................................... 77 4.3 Experiments on Oral Cancer Datasets ............................................................ 86 4.4 Summary......................................................................................................... 91 5 Methods for Automatically Determining the Number of Clusters .......... 93 5.1 Introduction .................................................................................................... 93 5.2 VFC-SA Clustering Algorithm....................................................................... 94 5.3 SAFC Clustering Algorithm........................................................................... 98 5.4 Evaluation of VFC−SA and SAFC Clustering of Oral Cancer Cells ........... 103 5.5 Summary....................................................................................................... 115 6 Methods for the Examination of Tissue Sections..................................... 117 6.1 Introduction .................................................................................................. 117 6.2 Lymph Node Dataset Description ................................................................ 118 6.3 A Combination of Principal Component Analysis and Fuzzy C- Means Clustering.......................................................................................... 121 6.4 Comparison of K−Means and Fuzzy C−Means in Lymph Node Tissue Sections ............................................................................................. 137 6.5 Summary....................................................................................................... 143 ii Table of Contents 7 A Cluster Merging Algorithm ................................................................... 145 7.1 Introduction .................................................................................................. 145 7.2 Feature Extraction......................................................................................... 147 7.3 Fuzzy C-Means Based Clustering Algorithm............................................... 148 7.4 The Basis of a New Automated Method to Merge Clusters......................... 149 7.5 Experimental Results.................................................................................... 159 7.6 Discussion of Results ................................................................................... 168 7.7 Summary....................................................................................................... 172 8 Conclusions ................................................................................................. 173 8.1 Contributions ................................................................................................ 174 8.2 Future Work.................................................................................................. 180 8.3 Dissemination ............................................................................................... 184 9 References.................................................................................................... 188 10 Appendix ..................................................................................................... 198 iii List of Figures LIST OF FIGURES Figure 1.1 FTIR Microscopy spectra for paint analysis [24]. .................................. 5 Figure 1.2 An overview of the project collaboration. .............................................. 6 Figure 2.1 Two dimensional dataset with 3 clusters [27]. ..................................... 15 Figure 2.2 Dendrogram obtained from Figure 2.1 [27].......................................... 15 Figure 2.3 The k-means clustering algorithm. ....................................................... 18 Figure 2.4 The fuzzy c-means clustering algorithm [47]. ...................................... 20 Figure 2.5 Outline of the SA based clustering algorithm....................................... 22 Figure 2.6 The perturbation process in Brown and Huntley [53]. ......................... 25 Figure 2.7 Identification of the number of clusters by using a validity index [56].33 Figure 2.8 Two dimensional dataset strips in four directions. ............................... 44 Figure 2.9 Effective merging radius for clusters i and j......................................... 48 Figure 3.1 Typical location of lymph nodes that drain lymph from the breast...... 67 Figure 3.2 Perkin elmer spotlight imager............................................................... 68 Figure 4.1 Tissue sample from Dataset 1; (a) 4× stained picture; (b) 32× unstained picture. .................................................................................................. 78 Figure 4.2 FITR spectra from Dataset 1................................................................. 78 Figure 4.3 32× unstained picture from tissue sample Dataset 2............................. 79 Figure 4.4 32× unstained picture from tissue sample Dataset 3............................. 80 Figure 4.5 White light image of tissue sample Dataset 4....................................... 81 iv List of Figures Figure 4.6 Tissue section from dataset 5 (a) white light image (b) spectroscopic- staining image. ...................................................................................... 83 Figure 4.7 White image of tissue sample for dataset 6 (a) part 1 (b) part 2........... 84 Figure 4.8 White image of tissue sample for Dataset 7. ........................................ 85 Figure 5.1 VFC-SA clustering algorithm procedure. ............................................. 96 Figure 5.2 The split centre procedure................................................................... 100 Figure 5.3 An illustration of Split Centre from the original algorithm with distinct clusters (where µ 11 and µ12 represent the membership degree of w1 to the centres v1 and v2 respectively)....................................................... 101 Figure 5.4 The new Split Centre applied to the same dataset as Figure 5.3, above, (where w1 is now the data point that is closest to the mean value of the membership degree above 0.5). .......................................................... 101 Figure 5.5 The SAFC clustering algorithm.......................................................... 102 Figure 5.6 Fuzzy C-Means, VFC-SA and SAFC cluster results for dataset 1. .... 108 Figure 5.7 Cluster results for dataset 2 obtained from (a) Fuzzy C-Means, VFC-SA and 3/10 runs from SAFC (b) 7/10 runs from SAFC. ........................ 108 Figure 5.8 Cluster results for dataset 3 obtained from (a) Fuzzy C-Means and VFC-SA (b) SAFC.............................................................................. 109 Figure 5.9 Cluster results for dataset 4 obtained from (a) Fuzzy C-Means (b) VFC- SA and SAFC...................................................................................... 109 Figure 5.10 Cluster results for dataset 5 obtained from (a) Fuzzy C-Means and 5/10 runs from VFC-SA (b) SAFC and 5/10 runs from VFC-SA. ............. 109 Figure 5.11 Fuzzy C-means, VFC-SA and SAFC cluster results for dataset 6...... 110 v List of Figures Figure 5.12 Cluster results for dataset 7 obtained from (a) Fuzzy C-Means, 9 runs from VFC-SA and SAFC (b) 1 run from VFC-SA............................. 110 Figure 6.1 (a) Photomicrograph of the H&E stained parallel lymph node tissue section used for IR analysis (b) selected area – LNII5 at high magnification (c) different tissue types description (d) LNII5 spectral image................................................................................................... 120 Figure 6.2 IR imaging of lymph node tissue section LNII5 by PCA (a) H&E stained image of LNII5 (b)−(k) false colour weighted images for PC1−PC10 respectively. ..................................................................... 124 Figure 6.3 Clustering results from three separate runs with fuzzy c-means. ....... 125 Figure 6.4 A three – dimensional scatter plot of the tissue section spectra projected onto the first 3 PCs.............................................................................. 127 Figure 6.5 IR imaging of lymph node tissue section LNII5 by fuzzy c-means (a) H&E stained image of LNII5 (b)−(i) fuzzy c-means false colour weighted clustering results, the number of clusters were from 2 – 9 respectively. ........................................................................................ 130 Figure 6.6 IR imaging of lymph node tissue section LNII5 by PCA–fuzzy c-means (a) H&E stained image of LNII5 (b)−(i) fuzzy c-means false colour weighted clustering results, the number of clusters were from 2 – 9 respectively. ........................................................................................ 132 Figure 6.7 LNII5 tissue section spectra plot in three dimensional PCs space (a) original plot with 5 clusters (b) rotated plot of picture (a).................. 136 vi List of Figures Figure 6.8 Clustering results from k-means (a&b) and fuzzy c-means (c) in 2 clusters. ............................................................................................... 138 Figure 6.9 K-means clustering results in 3 − 9 clusters. ...................................... 139 Figure 6.10 Fuzzy c-means clustering results in 3 − 9 clusters.............................. 139 Figure 6.11 Variation in k-means clustering results for 5 clusters......................... 139 Figure 6.12 Variation in k-means clustering results for 6 clusters......................... 140 Figure 6.13 Variation in k-means clustering results for 7 clusters......................... 140 Figure 6.14 Variation in k-means clustering results for 9 clusters......................... 140 Figure 7.1 The fuzzy c-means based clustering algorithm................................... 150 Figure 7.2 An extracted spectral dataset after applying fuzzy c-means based clustering algorithm. ........................................................................... 151 Figure 7.3 The procedure of determining a reference wave-number. .................. 153 Figure 7.4 Mean infrared spectra obtained from different clusters...................... 154 Figure 7.5 Enlarged region of Figure 7.4. ............................................................ 154 Figure 7.6 The procedure of automated merge clusters. ...................................... 156 Figure 7.7 Four mean spectra absorbance at reference wave-number. ................ 157 Figure7.8 The resultant absorbance distribution obtained after merging the two most similar clusters. .......................................................................... 157 Figure 7.9 The merging situation when there are two dist left (type 1). .............. 158 Figure 7.10 The merging situation when there are two dist left (type 2). .............. 158 Figure 7.11 Entire automated merging clustering procedure. ................................ 158 Figure 7.12 The extracted spectral dataset after applying the proposed automated merging cluster method. ..................................................................... 159 vii List of Figures Figure 7.13 An example of an extracted dataset. ................................................... 160 Figure 7.14 An example of a whole sub area of lymph node dataset. ................... 161 Figure 7.15 (a) Extracted LNII7 clustering results after applying fuzzy c-means based clustering algorithm. (b) Extracted LNII7merged clusters results. ............................................................................................................ 162 Figure 7.16 (a) Dataset 3 clustering results obtained from SAFC algorithm. (b) Dataset 3 merged clusters results. ...................................................... 163 Figure 7.17 (a) Dataset 5 clustering results obtained from SAFC algorithm. (b) Dataset 5 merged clusters results. ...................................................... 163 Figure 7.18 Lymph node tissue section LNII7. Sampled area was 275µm × 818.75µm in size. (a) Total absorbance IR image (b) H&E stained image. Clustering results after fuzzy c-means based clustering algorithm. Each colour represents a different cluster of IR spectra (c) 5 cluster image (d) 6 cluster image (e) 9 cluster image (f) Final results obtained from automated merge clustering algorithm – this image contained two final clusters of IR spectra........................................... 164 Figure 7.19 Lymph node tissue section LNII5. Sampled area was 30625µm × 95625µm in size. (a) Total absorbance IR image (b) H&E stained image. Results after fuzzy c-means based clustering algorithm. Each colour represents a different cluster of IR spectra (c) 5 cluster image (d) merged cluster result from 5 cluster image (e) 4 cluster image (f) merged cluster result from 4 cluster image. Both merged cluster results contained three clusters of IR spectra. ................................................ 166 viii List of Figures Figure 7.20 Lymph node tissue section LN57. Sampled area was 550µm × 512.5µm in size. (a) Total absorbance IR image (b) H&E stained image. Clustering results after fuzzy c-means based clustering algorithm. Each colour represents a different cluster of IR spectra (c) 3 cluster image (d) 4 cluster image (e) 5 cluster image (f) Final result obtained from automated merge clustering algorithm. Image contained three final clusters of IR spectra........................................................................... 166 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.