ebook img

Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV PDF

18 Pages·2016·3.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV

sensors Article Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV ZainAnwarAli1,*,DaoboWang1andMuhammadAamir2 1 CollegeofAutomationEngineering,NanjingUniversityofAeronauticsandAstronautics,Nanjing210016, China;[email protected] 2 ElectronicEngineeringDepartment,SirSyedUniversityofEngineeringandTechnology,Karachi75300, Pakistan;[email protected] * Correspondence:[email protected];Tel.:+86-1301-693-1051 AcademicEditor:FelipeGonzalezToro Received:3February2016;Accepted:28April2016;Published:9May2016 Abstract: In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilizationofatri-rotorunmannedaerialvehicle(UAV).Thefuzzyhybridschemeconsistsofa fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptivecontrol(MRAC),inwhichadaptivegainsoftheRSTcontrollerarebeingfine-tunedbya fuzzylogiccontroller. Brushlessdirectcurrent(BLDC)motorsareinstalledinthetriangularframe ofthetri-rotorUAV,whichhelpsmaintaincontrolonitsmotionanddifferentaltitudeandattitude changes,similartorotorcrafts. MRAC-basedMITruleisproposedforsystemstability. Moreover,the proposedhybridcontrollerwithnonlinearflightdynamicsisshowninthepresenceoftranslational androtationalvelocitycomponents. Theperformanceoftheproposedalgorithmisdemonstratedvia MATLABsimulations,inwhichtheproposedfuzzyhybridcontrolleriscomparedwiththeexisting adaptiveRSTcontroller. Itshowsthatourproposedalgorithmhasbettertransientperformancewith zerosteady-stateerror,andfastconvergencetowardsstability. Keywords: UnmannedAerialVehicle;Tri-RotorUAV;RSTcontroller;fuzzyhybridcontroller 1. Introduction Oneofthebestinventionsoftoday’seraisthesmallflyingmachinecommonlycalledaUAV.This researchisdedicatedtosuchtypesofUAVs,whicharecommonlyusedinthemonitoringofdisaster managementandmilitaryoperations,aswellassmallindooractivities[1–3]. TheresearchonUAVsis basedonthedifferentknowledgebanksofaeronautics,signalprocessing,andcontrolautomation. For thisresearch,multiplehardware-basedtestsareperformedtodesignthebestflyingmachineswith precisecontrolmechanisms. Thecurrenttrendisfocusedonthedesignofadvanced,lightweight,andperfectUAVsthatcan beoperatedinanydisastroussituationsoverremoteareas. UAVsareclassifiedaseitherfixed-wing orrotarywing[4]. Rotor-basedUAVsaremultipleinputandmultipleoutput(MIMO)multivariable systems [5]. Rotorcraft have a great advantage over fixed-wing aircraft with respect to various applications,likeverticaltakeoffandverticallanding(VTOL)capabilityandpayloads. Rotor-based UAVsincludemanytypes,suchasbi-rotor,tri-rotor,quad-rotorandhex-rotor[6]. Moreover,atri-rotor UAVwithVTOLabilityisconsideredinthispaper. Real-worldapplicationofUAVsrequireintensehardwaretesting. Beforetheexperimentaltesting ofourproposedalgorithmintherealworld,wehavetosimulatethenumericalnonlinearsimulations fortheEulerangles,controlcommands,rotationalvelocities,andtranslationalvelocities[7]. Inthis research,ourmainconcernistorectifytheerrorwhichoccursinayawmomentduetotheunpaired Sensors2016,16,652;doi:10.3390/s16050652 www.mdpi.com/journal/sensors Sensors2016,16, 652 2of18 reactionoftherotors,therebyproducingtorque. Brushlessdirectcurrent(BLDC)motorsareinstalled inthetriangularframeofthetri-rotorcrafttonullifythetiltanglemoment. The dynamics of the UAV are highly nonlinear and multi-variable, with a lot of parameter uncertainties,manyeffectstowhichapotentialcontrollerhastoberobust. Theaerodynamicsofthe actuatorblades(flappingofbladeandpropeller),inertialtorques(angularspeedofpropellers),and gyroscopiceffects(whichchangetheorientationoftheUAV)arefoundin[8]. Theredundancyinthe rotorsofaUAVformulatesthemtowardsasetofpartialcollapses. Althoughthemaneuverability and performance will probably be condensed in the case of such a collapse, it is required that a controller stabilizes the system and tolerates reduced mode functions, such as safe arrival, steady hover,etc.[9,10]. Previously, many control methods were used for the stabilization of UAVs, including the conventionalproportionalintegralderivative(PID)controller,fuzzycontroller,adaptivecontroller, andsoon[11]. ForcontrollingtheparametersofaUAVanadaptivecontrollerhasacapabilitytogive goodperformanceinthepresenceofmodelandparametricuncertainties,whileMRACisconcerned withthevibrantreactionofthecontrolledsystemtoasymptoticconvergence. Itfollowsthereference systeminspiteofparametricmodeluncertaintiesinthesystem[12]. In [13] the proposed MRAC for controlling the dynamics of a quad-rotor in the presence of actuatoruncertaintieswasconsideredtoenhanceanexistinglinearcontroller,offeringautonomous waypointfollowing. ThestabilityoftheadaptivecontrollerwasensuredbytheLyapnauvtheorem and,inanonlinearstructure,thealgorithmisappliedforindoorflighttest. In [14] the hybrid control scheme to fault tolerant control (FTC) for a quad-rotor aircraft in thepresenceoffaultsintheirrotorsduringtheflighthavebeenexploredandtestedontheMRAC algorithmandagain-scheduledPID(GS-PID)control. MRACandGS-PIDareusedincollaboration withalinearquadraticregulator(LQR)tocontroltheattitudeoftheUAV.MRACisbasedonMIT rulesforcontrollingtheheightandotherparametersofaQball-X4Quad-Rotoraircraft. Takagi-Sugenofuzzyruleswerepreviouslyusedin[15,16]tocontrolthenonlinearbehaviorof the vehicle. On the other hand, in [17], a twin controller approach that consists of a backstepping controllertocontrolthenonlineardynamicsofthesystemandlinguisticlogicrulesofafuzzylogic controller(Mamdani)isusedtocontroltheattitudeoftiltofatri-rotorUAV.In[18]adualcontroller approachwithanadaptivefuzzyslidingmodecontrollerisusedtocontroltheminiUAV,inwhich slidingmodecontrolisutilizedtocontrolthenonlinearbehavioroftheUAV,andthenfuzzylogic rulesareimplementedonit. Thehybridcontrollerapproachwasalsoaddressedin[19]inwhicha fuzzy-PIDcontrollerwithaPSOalgorithmisappliedontri-rotordynamics. Hwoever,inthispaper,weproposedafuzzyhybridcontrollerconsistingofaRSTwithMRAC, based on MIT rules working as a main controller in the model to deal with the nonlinear system. WecomparetheperformanceofourproposedfuzzyhybridcontrollerwiththerobustadaptiveRST controllerof[20]. Moreover,theadaptivegainsoftheRSTcontrollerare(i.e.,regulationgain“G ”,pole-placement R gainG ,andtrackinggain“G ”)tunedbyafuzzylogiccontroller(Mamdanitechnique). Thismeans S T thatourmaincontrollerisaRSTwithMRACbasedonMITrules, andforthetuningpurposewe use the Mamdani fuzzy logic controller. We have to implement the gains of RST by addingfuzzy logicbetweenuniformscalesofmembershipfunctions. Itshowsthebestresultsascomparedtothe adaptiveRSTcontroller[21,22]. Inthispaper,weareincorporatingRSTcontrollerwithourproposedsystemintwoseparateways. First,thesystemisundergoesthroughRobustadaptiveRSTcontroller,afterthatweuseFuzzy-Hybrid basedMITalgorithmandthenconcludetheresultsbytakingthedifferenceofrobustness. Thecorecontributionsinthisresearchareasfollows: (1)anovelfuzzy-basedadaptiverobust RST controller is derived by accumulating the MIT rule in the control law to remove the model disturbanceandtoderivethesteady-stateerrortozero;(2)theproposedcontrollerusestheangular responsesasaninputcontrolcommand,whichshowsmoreaccurateandpracticalinsightinthereal Sensors2016,16, 652 3of18 world;(3)inspiteofthemodeldisturbance,thecloseloopsystemerrorconvergestozero,provedin Theorem2;and(4)lastly,thepolynomialcharacteristicsolutionisbasedontheDiophantineequation whileleastsquareestimationisusedtochecksystemstabilityandprovedinTheorem3. Thebreakupofthispaperisstructuredasfollows. Thesystemmodeling,dynamicrepresentation of a tri-rotor UAV, and main engine model is discussed in Section 2. Section 3 demonstrates the dynamiccontrolstrategiesandthecontrolalgorithmoftheUAV.Moreover,thesimulationresultsand discussionsarediscussedinSection4. Lastly,Section5statestheconclusions. 2. SystemModelandPreliminaries 2.1. Tri-RotorModeling The equation of motion of a rigid body is defined by Newton’s second law of motion [23,24]. Linearandangularforceschangewithrespecttothetimeframe,calledtheinitialreferenceframe,in whichtheUAVhasasimilarvelocity,forcecomponents,andmoments,whichareusedtodevelopthe sixdegreesoffreedomnonlinearequationsofmotion. Thenonlinearaerodynamicforces,aerodynamic moments, rotation motion, and translational motion of a UAV are defined by using differential Equations(1)–(4). Equationsofaerodynamicforce: ` ˘ . FX´mgsinθ“m u``qw´rv ˘ . FY`mgcosθsinϕ“m`v`ru´pw˘ (1) . F `mgcosθcosϕ“ m w`pv´qu Z Equationsofaerodynamicmoments: ` ˘ . . L“Ixp´ Ixzr `qr Iz´ Iy`´ Ixzpq˘ . M“Iyq`rp pIx´ Izq`` Ixz p˘2´ r2 (2) . . N“´I p`I r `pq I ´ I ` I qr xz z y x xz Rotationalrates: . . p“ϕ´ψsinθ . . q“θcosϕ`ψcosθsinϕ (3) . . r “ψcosθcosϕ´θsinϕ Euleranglesandbodyangularvelocities: . θ“ qcosϕ´rsinθ . ϕ“ p`qsinϕtanθ` rcosϕtanθ (4) . ψ“ pqsinϕ`rcosϕqsecθ Thefourcontrolcommandsofthetri-rotorUAVare(Col,Lat,Lon,Ped),whichissimilartothe conventionalhelicopter,inwhichColisCollective,LatisLateral,LonisLongitudinal,andPedispedal. (Col,Lat)areusedtocontroltherollrate,(Lon)controlthepitchrateand(Ped)controlstheyawrate ofaUAVandtiltanglebyusingtheparameter“9”[25,26]. (p,q,r)and(U,V,W)aretherotational velocityandtranslationalvelocityofthecoordinatesystem. (L,M,N)and(φ,θ,ψ)aretheexternal momentsandrotationalanglesofafixedbodyframe. Atri-rotoraerialvehicleexhibitsmanyphysicaleffects,likeinertialtorque,effectsofaerodynamics, effectsofgravity,effectsofgyroscopeandfrictionaleffects,etc. Inthepresenceofthesephysicaleffects itisquitedifficulttodesignacontrollerwhichcaneasilyhandleallofthephysicaleffectsandstabilize theUAVinafairamountoftime,becauseithassixdegreeoffreedom(6-DOF)withahighly-nonlinear, multivariable,under-actuated,strongly-coupledmodelwiththerotors,asshowninFigures1and2 takenfromthedesignofMohamedMK[27]. Sensors2016,16, 652 4of18 Sensors 2016, 16, 652 4 of 17 Sensors 2016, 16, 652 4 of 17 FiFFgiiuggruuerree1 .11T.. oTTpooppv ivveiiweewwo oofffa aat rttrri-iir--rroootttooorrrU UUAAAVVVa aalllooonnnggg wwwiiittthhh rrroootttaaatttiiiooonnnaaalll aaannnddd tttrrraaannnsssiittiiitooionnnaaall lrraarttaeetsse..s . Figure 2. 3-D view of a tri-rotor UAV along with aerodynamic moment components. FigFuigruer2e. 23. -3D-Dv iveiwewo offa at rtri-ir-roottoorr UUAAVV aalloonngg wwiitthh aaeerrooddyynnaammiicc mmoommeennt tcocommpponoennetnst. s. The tri-rotor UAV, including translational and rotational subsystems, needs a vibrant strategy The tri-rotor UAV, including translational and rotational subsystems, needs a vibrant strategy of Tnhoenltirnie-raor tsoerqUueAnVti,ailn ccolundtrionl gint rtahnes l6a-tDioOnFa lmaonddelr.o Ttahtiiso rneasleasrucbhs yadstdermesss,ens eeerdrosra covnibtrroalnlitnsgt riant eag y of nonlinear sequential control in the 6-DOF model. This research addresses error controlling in a ofntroi-nrolitnoer aarirscerqaufte bnyti amlacnoangtirnogl itnhet htoer6q-uDe OpFromduocdeedl .bTy huinspreaisreeadr crhotaodr dreraecstsieosnse.r rToor ocvoenrtcroomllien tghiisn a tri-rotor aircraft by managing the torque produced by unpaired rotor reactions. To overcome this tri-irsostuoer, aiimrcprlaefmtbeyntmataionna goifn gditfhfeeretonrtq dueespigrnosd uhcaesd bbeyenu nmpaadiere wdirtoht othrer ehaecltpio nosf .BTLoDoCv emrcootmores,t hwishiiscshu e, issue, implementation of different designs has been made with the help of BLDC motors, which impacletumalelny tcaotniotrnool tfhdei nffuelrleifnytindge sainggnles. hTahsisb meeenthmoda dise uwseiftuhl tfhoer qhueilcpkeorf tBuLrnD bCy mtilotitnogr st,hwe rhoitcohr’as catxuisa.l ly actually control the nullifying angle. This method is useful for quicker turn by tilting the rotor’s axis. controlthenullifyingangle. Thismethodisusefulforquickerturnbytiltingtherotor’saxis. 2.2. Dynamic Representation of a Tri-Rotor UAV 2.2. Dynamic Representation of a Tri-Rotor UAV 2.2. DynamicRepresentationofaTri-RotorUAV The orientation of the UAV is explained by Euler angles having altitude, roll ((cid:2016)), pitch ((cid:2030)), and The orientation of the UAV is explained by Euler angles having altitude, roll ((cid:2016)), pitch ((cid:2030)), and yyaaTwwh e(((cid:2006)(cid:2006)o))r icceoonnntattrrtooioll naaonnfddt hiitte rrUooAttaaVtteeisss aaellxoopnnlgga in((xxe,,d yyb,, yzzE)) uaalxxeeerssa,, nrreegssleppseecchttaiivvveeinllyyg.. aTTlhhtieetu ttdrraaenn,rssollaallttii(ooθnn),aapll iaatcnnhdd (rrϕoo)tt,aaattniioodnnyaalla w (Ψ)mmcooovvneetmmroeelnnattn oodff ittthhreeo tttarriit--errsoottaoolrro nUUgAA(VVx ,iiynn,ttzoo) ttahhxeee dds,iimmreeesnnpsseiiooctnniaavlle lssypp.aaTcceeh eaanntrdda nddsyylnnaaatimmoniiccassl ooaffn dtthhreeo rrtiiaggtiiiddo nbbaoolddmyy oddveeerriimvveee nt oftffhrrooemmtr iNN-reeowwtottoornnU’’ssA llVaawwin.. tMMoootrrheeeoodvveeimrr,, emmnoosmmioneennattlsss,, pffooarrccceeessa,,n vvdeelldooycciinttyyam ccooimmcsppooofnnteehnnettssr,,i gaainndddb aaoeedrrooydddyyennraaimmveiiccf rccooommmppNooennweenntottssn ’s are described in Table 1. lawa.reM doersecorvibeerd,m ino Tmaebnlets 1,.f orces,velocitycomponents,andaerodynamiccomponentsaredescribedin Table1. Table 1. Dynamic constants of a tri-rotor UAV. Table 1. Dynamic constants of a tri-rotor UAV. Table1.Dynamicconstantsofatri-rotorUAV. x, y, z Axis System Roll(φ) Pitch (θ) Yaw (ψ) x, y, z Axis System Roll(φ) Pitch (θ) Yaw (ψ) Aerodynamic Force Components X Y Z x,yA,zerAodxiysnSaymstiecm Force ComRpoolnle(φnt)s XP itch(θ) Y YawZ( ψ) Aerodynamic Moment Components L M N Aerodynamic Moment Components L M N AerodynaTmraincsFloartcioenal Velocity U V W Translational Velocity X U Y V WZ Components Angular Rates p q r AerodynamicMAnomguelnatr Rates p q r ComponTTehhnrrteesee--AAxxiiss IInneerrttiiaa L IIxx M IIyy NIIzz TranslationalVelocity U V W TThhee oovveerraallll Assyynssgtteeummlar ccRoonnatffeiiggsuurraattiioonn iiss ddeeffiinnpeedd iinn FFiigguurree 22,, wwhhqeerree ““LL”” iiss tthhee ddiissttaarnnccee ffrroomm tthhee cceenntteerr ooff tthhee bbooddyy ffrraaTmmheer etteoo- Aaallxll ittshhIrrneeeeer trriooattoorrss,, llaabbeelllleeddI xaass LL11,, LL22,, aanndd LL33I.. yTThhee rroottoorr ffoorrcceess aaIzrree ff11,, ff22,, ff33,, aanndd tthhee rotor torque is defined as (cid:2028) ,(cid:2028) , and (cid:2028) , respectively. The angular velocity of the system is “(cid:2025)”. rotor torque is defined as (cid:2028)(cid:2869),(cid:2028)(cid:2870), and (cid:2028)(cid:2871), respectively. The angular velocity of the system is “(cid:2025)”. (cid:2869) (cid:2870) (cid:2871) Theoverallsystemconfigurat ionisdefinedinFigure2,where“L”isthedistancefromthecenter ofthebodyframetoallthreerotors,labelledasL1,L2,andL3. Therotorforcesaref1,f2,f3,andthe rotortorqueisdefinedasτ , τ ,andτ ,respectively. Theangularvelocityofthesystemis“ρ”. 1 2 3 Sensors2016,16, 652 5of18 2.3. MainEngine(ElectricMotors) BrushlessDirectCurrent(BLDC)motorscanbeusedasamainengineoftheUAVtoachieve requiredelectricpropulsioninthesystem. BLDCmotorsfoundtheirapplicationinthefieldofrobotics, spacecraftsandmedicaldevices,duetohighertorquespeedfeatures,greaterperformance,minimum repairsandvariabledegreeofspeed[28]. GenerallyBLDCismorecostlythansimpleDCmotors, duetoitsbetterefficiencyandreliability[29]. TheelectricalandmechanicalequationsofBLDCare givenbelow. di V“Ri`pL´Mq `E (5) dt E“K ω Fpθ q (6) e m e T“Ki Fpθ q (7) t a e d2θ dθ T “J m `β m (8) e dt2 dt P θ “ θ (9) e m 2 dθ ω “ m (10) m dt Inwhich,Vistheappliedvoltage;Risthetotalresistance;Eisthebackelectromagneticforce;L isthetotalinductanceofthemotor;Misthemutualinductanceofthemotor;ω istheangularspeed m ofthemotor;θ istherotationangleofthemotor;T istheelectricaltorqueproducedbythemotor; e e andK istheback-EMFconstant. e 3. DesigningofController 3.1. Tri-RotorDynamicControlStrategies Theflightdynamicsandcontrolstrategyofatri-rotorUAVisthesameastraditionalaircraft. The placementororientationofflightdynamicscontrolisaproductofroll,pitch,andyaw. Thecontrol schemeoftheUAVincludesaltitude,roll,pitch,yaw,andtiltanglecontrol,havingamajorroleforthe displacementcontroltheparametersofthesystem. AltitudeControlMechanism: Toachievethedesiredaltitude,thespeedofallrotorsmustbesame ρ1=ρ2=ρ3. IncreasingthespeedofallrotorsconstantlywilleventuallyraisethealtitudeoftheUAV, suchthattheangularvelocityofmotorsbecomesequal. RollControlMechanism: Rollcontrolisachievedbyregulatingthefrontrotorsspeed. Decreasing rotor1velocity,rollsthesystemtotheleftandrotor2rollsthesystemtowardsright-side. Rollcontrol hastwoconditions. i Whenmovingclockwiserollρ2ąρ1ąρ3. ii Whenmovingcounter-clockwiserollρ2ăρ1ăρ3. PitchControlMechanism: RegulatingthespeedofRotor1andrearwardrotorswillchangethe pitch. ThesystempitchesdownwardifthespeedofRotors1and2decreaseswhileRotor3speed keepsrising. IfwedecreasethespeedofRotor3andincreasethespeedofRotors1and2,theUAV pitchrisesandflyflightreverses. Pitchcontrolalsohastwoconditions: i Whennose-upρ2“ρ3ąρ1. ii Whennose-downρ2“ρ3ăρ1. YawControlMechanism: Theproductofreactiontorqueandtiltangle“9”ofRotor3isusedto controlyawmovement. ThevalueofthetiltangleistoosmallandhelpstomaneuvertheUAVquickly. Theyawcontrolconditionis: ρ1“ρ2“ρ1,with9“ 0. Sensors2016,16, 652 6of18 3.2. ControlAlgorithm Inthissectiontheoverallcontrolhierarchyisdefinedtocontroltheattitudeandaltitudeofthe tri-rotorUAV.InwhichweassumethedesiredattitudevariablesareK “ ∅(roll),K “ θ (pitch), 1 2 andK “ Ψ(yaw),respectively,andK isageneralizedtermfortherotationalanglesofthesystem. 3 T NowthecontrolalgorithmfortheattitudecontrollingofanactualsystemoftheUAViswrittenas: B pjq G pjq“ “Yptq (11) KT1 Apjq ThedegreeofthesystemmodelnumeratorBpjqanddenominator Apjqisfoundtobe“1”and “3”. WhereB“pB`˚B´q,suchthatB`isvariableandB´ istheconstant. Equation(12)presentsthedesiredattituderesponseofourUAVmodel: B pjq m G pjq“ “Y ptq (12) KT2 A pjq m m Nowthegradienttheorywhichwasdefinedbythemodelreferenceadaptivecontrolmethod isimplemented: degA “2˚degApjq´1“5 (13) c So,theRSTcontrollerwillbesecond-ordered,andnowdegA “degApjq´degB`´1“ 1. 0 Remark 1. For the perfect system model A pjq “ Apjq and B pjq “ Bpjq. Where A and A is the m m C Cm characteristic polynomials of the actual and desired system models and A “ A for the constraints and Cm C will not affect the system to change the close loop poles of the model. Otherwise, A differes the system Cm modelmismatch. FuzzyLogicController. Thevibrantperformanceofthefuzzylogiccontrollerisdescribedby the set of linguistic procedures that was established by a knowledgeable acquaintance in [30–32], in which the system “error” and variation in error rate are the input constraints, and RST are the variableoutputsinourproposedcontroller. Formerly,RSTcanbeimprovedonline,usingthesetof rules,existingerror,andvariationintheerror. Ingeneral,theerrorintheangle,combinedwiththe mechanismoutput,increases. Furthermore,thecontrollerperformswellwhethertheerrorrisesor therateoferrordifferencefalls. Itisimportantthat,intheminorerrorphase,theearmarkedcontrol outputisrequiredtoinfluencethechangeinerrorassoonastheerrorfallssuddenly. WiththehelpofEquation(13),thedegreeoftheproposedcontrollerisfoundtobe5. Thefuzzy logic-basedadaptiveRSTcontrolleriswritteninEquations(14)–(16): FR“q2`pr ˆqq`r (14) 0 1 FS“ps ˆq2q`ps ˆqq`s (15) 0 1 2 FT“pt ˆqˆA q`pt ˆA q (16) 0 0 1 0 PutthevaluesofFR, FS, FTintheabove: de U pjq“ FRpe, qG ˆepjq (17) FRKT dt R de U pjq“ FSpe, qG ˆΣepijq∆ptq (18) FSKT dt S de ∆epjq U pjq“ FTpe, qG ˆ (19) FTKT dt T ∆t whereG , G andG arethedelayedcontrolgainsofthesignalscalingfactors. R S T Sensors2016,16, 652 7of18 Remark2. G pjq andG pjq,arethesystemmodels. Moreover,thesystemdivergesatalowphaseangle KT1 KT2 wSeinthsorasn 20u1n6s, t1a6b, l6e52c ontrolsignal. Theproposedcontrolalgorithmisnotbetterinthiscase. Previously,in[373 o]f, 1a7 bettercontrollerwasproposedforthistypeofcase,amodelhavingalowphaseanglelyinginthecomplexplane wwiitthh ssoommeed damamppininggis issuseuse.sA. sAas rae sruelstu,litn, [i3n4 []3,4ze],r ozecraon ccealnlacteilolnatiinont hiens ythsete msysistesmit uisa tseidtuesaotetedr iecstohteeraicr etahwe hairceha willcancel. which will cancel. Remark3. Theproposedcontrollerdesignatsamplingoftime[NT],whichwillremovethedifficultiesinthe Remark 3. The proposed controller design at sampling of time [NT], which will remove the difficulties in the planningstageofcontrollerimplementation. planning stage of controller implementation. Theorem1. Afterdesigningthecontrolsystem,thenextstepisstabilityanalysis,whichshowstherobustness lTevheeloorfetmhe 1d. eAsifgtenre ddecsoignntrinolgl etrh.e Tcohnetsrtoal bsiylisttyemis, thhieg hnleyxtv sutlenpe risa bstleabdiuliteyt oanmaloydseisli,n wgheicrrho srhsocwasll ethdes reonbsuitsitvnietsys. Tlehveerle foofr et,hem dodeseilgmneidsm caotncthroalnledr. mTohdee lstsaebnisliittyiv iitsy haigrehlayd dveudlninerathbele sdyustee mto dmivoedregleinngc eebrreotwrse ecnalltehde saecntusiatlivaintyd. desiredresponsedependingupontheperformanceofthecontrolsystemanditsstabilitywhichwillbetaken Therefore, model mismatch and model sensitivity are added in the system divergence between the actual and from[34]Theorem5.4,andexaminethestabilityofthecontrolsystembyusingthemodeldisturbance. desired response depending upon the performance of the control system and its stability which will be taken Lemma. Theproposedequationillustratesthecloseloopsystemmodelhaving(NT)samplingperiod: from [34] Theorem 5.4, and examine the stability of the control system by using the model disturbance. ” ı ” ı ” ı Lemma. The proposedY eTquptaqtioNnT illustratGesT the pcjqloGseT looppj qsyHsTte,NmT mNoTdeGl NhaTvipnjqg (FNTTNT) sampling period: “ ”KT1 KT2 ı KT1 F”RNT ı F[RYN(cid:2904)T(t)](cid:2898)(cid:2904) 1`(cid:3427)GG(cid:2895)(cid:2904)TK(cid:2904)(cid:2869)T(1jp)jGq(cid:2895)(cid:2904)G(cid:2904)TK(cid:2870)(Tj2)Hpjq(cid:2904),H(cid:2898)(cid:2904)T(cid:3431),N(cid:2898)(cid:2904)TGN(cid:2895)(cid:2898)(cid:2904)(cid:2904)T(cid:2869)G(jNK)T(cid:3428)TFF1TRpj(cid:2898)(cid:2898)q(cid:2904)(cid:2904)(cid:3432)FFRSNNTT = FR(cid:2898)(cid:2904) FS(cid:2898)(cid:2904) HT,NT istheconversionratean1d+w i[llGd(cid:2895)(cid:2904)(cid:2904)e(cid:2869)p(ej)nGd(cid:2895)(cid:2904)o(cid:2904)(cid:2870)n(tj)hHe(cid:2904)o,(cid:2898)r(cid:2904)ie]n(cid:2898)(cid:2904)taGt(cid:2895)(cid:2898)io(cid:2904)(cid:2904)n(cid:2869)(oj)f(cid:3428)tFhRe(cid:2898)d(cid:2904)e(cid:3432)siredsignal. Rema(cid:1834)rk(cid:3021),(cid:3015)4(cid:3021). iTsh tehdei sctounrvbaenrsceioinn trhaetep oalnedp lwacielml denetpmenedth oodn itshoeb soorlieetentinat[i3o4n] .oSf itnhcee dtheesirreefedr esnicgenmalo. del,observer polynomial,andreferencemodeldisturbanceactasconstraints,theyareprovedinconvergenceanalysis. Remark 4. The disturbance in the pole placement method is obsolete in [34]. Since the reference model, observer ProofofTheorem1. Theoutputoftheunvaryingmodelisconsideredin[35]: polynomial, and reference model disturbance act as constraints, they are proved in convergence analysis. Proof of Theorem 1. The output of the unv”arying mıoNdTelF iTs NcoTnsidered FinS N[3T5]: NT YTptq“GT pjqGT pjqHT,NT GNT pjq r FRNT´ rYTptqs sT KT1 KT2 KT1 FRNT FRNT Y(cid:2904)(t)= G(cid:2904) (j)G(cid:2904) (j)H(cid:2904),(cid:2898)(cid:2904) (cid:3427)G(cid:2898)(cid:2904) (j)(cid:3431)(cid:2898)(cid:2904)[(cid:2890)(cid:2904)(cid:3146)(cid:3152) FR(cid:2898)(cid:2904)−(cid:2890)(cid:2903)(cid:3146)(cid:3152) [Y(cid:2904)(t)](cid:2898)(cid:2904)](cid:2904) (cid:2895)(cid:2904)(cid:2869) (cid:2895)(cid:2904)(cid:2870) (cid:2895)(cid:2904)(cid:2869) (cid:2890)(cid:2902)(cid:3146)(cid:3152) (cid:2890)(cid:2902)(cid:3146)(cid:3152) Remark 5. Figure 3, gives complete work flow of proposed system using model reference adaptive Remark 5. Figure 3, gives complete work flow of proposed system using model reference adaptive control controlalgorithm. algorithm. Figure3.Themodelreferenceadaptivecontrolsystem. Figure 3. The model reference adaptive control system. CCoonnvveerrggeennccee:: TTaakkininggt htheei nipnuptuct ocnosntsratrianitnstosf oofu orucro ncotrnotlrloerllesirg sniaglnsaglsiv geisvtehse tchleo sceloloseo ploeorpro errorofrth oef styhset esmystmemod meloadnedl uannsdt aubnlestpaabrlte opfatrhte odf itshtuer dbaisntucer.bIanncoeth. eInr wotohredrs ,woourrdpsr, oopuors pedroaplgooserdit hamlgoisriatbhlme tios satbalbei ltioz esttahbeiluiznes ttahbel eupnasrtatbolfet hpearnt ooifs ethoer ndoisistue robra ndcisetumrobdanelc.eT mheodcoenl. vTehrge ecnocnevaetrgtheencdee saitr ethdev daelusiereodf pvaarlaume oetfe prasriasmdeotneersb iys danonoep btiym aanl ocopntitmroallm coenthtroodl mbaestehdodo nbathseedM oInT thruel MetIoTi rduelnet tiofy idtheneteifryro trhse. errors. Remark 6. For the proposed controller the adaptive gain is in the range of 0.15 to 5 and above this range the controller performance deteriorates. e(j)=Y(cid:2911)(cid:2913)(cid:2930)(cid:2931)(cid:2911)(cid:2922)(t)−Y(cid:2923)((cid:2914)(cid:2915)(cid:2929)(cid:2919)(cid:2928)(cid:2915)(cid:2914)) (20) The sensitivity derivative is presented in Equation (21): Sensors2016,16, 652 8of18 Remark6. Fortheproposedcontrollertheadaptivegainisintherangeof0.15to5andabovethisrangethe controllerperformancedeteriorates. epjq“Y ptq´Y (20) actual mpdesiredq ThesensitivityderivativeispresentedinEquation(21): BpjqT Yptq“ (21) pApjqR`BpjqSq ApjqR`BpjqS U ptq“ ˚Yptq (22) c BpjqT Theconvergenceproofcontractsdistinctlywiththeconstraints,firstlyidentifyingthesensitivity derivativeofalloftheparameters(t , t ,r , r ,s , s , s )ofthecontroller. 0 1 0 1 0 1 2 TheDiophantineequationrepresentsasA “ApjqR`BpjqSandA “A A pjq;therefore: C C 0 m ApjqR`BpjqS“ A A pjq (23) 0 m TheMITrule-basedsensitivityderivativeofEquation(20)is: BpjqT epjq“ ˚U ptq´Y (24) c m ApjqR`BpjqS Theorem2. ThemodelinEquation(11)withcontrollerEquation(14–16)onthebasisofsystem(Apjq,Bpjq), havingUAVmodeldisturbance,theerrorofcloseloopoutputEquation(24)goestozeroasymptoticallyifand onlyif A = A . Cm C ProofofTheorem2. ThecloseloopoutputerrorEquation(24)issettledby A andcomparedwith C Equation(23). 1. If,andonlyif,Apjq“A pjqandB pjq“ B pjq;therefore,thecloseloopoutputerrorresponds m m toepjqandgoestozeroasymptoticallybecauseA isstableinEquation(13)andA issupposedto C Cm bestable. 2. Contradiction: if Apjq ‰ A pjq and B pjq ‰ B pjq, the value is not cancelled by the close m m loopoutputerrorinEquation(24). Theinstabilityisinthedenominatorofepjqif A isunstable. Cm Hereafter,ifA ‰A orA isunstable,thenepjqcloseloopoutputerrorraises,unbounded,andit C Cm Cm isnecessaryforA tobestabletomakethecloseloopoutputerrorzero. Cm NowputinthevalueofT“pt q`t )A inEquation(24): 0 1 0 Bpjqpt q`t qA epjq“ 0 1 0˚U ptq´pY q (25) c m ApjqR`BpjqS Therefore,w.r.t“t ”,thepartialderivativeofEquation(25)is: 0 $ ’’’’& δδ´petp0jqq “ pApBjqpRjq`q¯ABp0jqSq ˚Ucptq δepjq BpjqqA ApjqR`BpjqS “ 0 ˚ ˚Yptq (26) ’’’’% δpt0q pApδjqeRp`jqB“pjqSqA0q ˚YpBtpqjqT δpt0q T Sensors2016,16, 652 9of18 ThepartialderivativeofEquation(25)w.r.t“t ”is: 1 $ ´ ¯ ’’’’& δδpet´p1jqq “ pApjqRB`pj¯qBpjqSq ˚Ucptq δepjq Bpjq ApjqR`BpjqS “ ˚ ˚Yptq (27) ’’’’% δpt1q pApjqδRe`pjqBp“jqSqA0 ˚YpBtqpjqT δpt1q T FromEquation(24),replacethevalueofR:(R=pqq2`r q`r ) 0 1 BpjqT ` ˘ epjq“ ˚U ptq´pY q (28) Apjq q2`r q`r `BpjqS c m 0 1 PartialdifferentiateEquation(25)w.r.t“r ”: 0 $ ˆ ˙ ’’’’’’& δδperp0jqqˆ“´ pApjBqRpj`qTB˙ApSjqSq2 ˚Ucptq δepjq BpjqTAS ApjqR`BpjqS (29) ’’’’’’% δpr0q “´ δpeApjpqjqR“`´BpjqSqA2S ˚˚YBpptjqqT ˚Yptq δpr0q A0Ampjq PartialdifferentiateEquation(25)w.r.t“r ”: 1 δepjq Apqq “´ ˚Yptq (30) δpr q A A pjq 1 0 m PutthevalueofS,S“ps ˚q2`s ˚q+s qinEquation(24): 0 1 2 BpjqT ` ˘ epjq“ ˚U ptq´pY q (31) ApjqR`Bpjq s q2`s q`s c m 0 1 2 NowthePartialderivativeofEquation(31)w.r.t“s ”: 0 $ ´ ¯ ’’’’’’’& δδpesp0jqq “´ ´pApBjpqjRq¯2`˚Bpqjq2Sq2˚Ucptq ’’’’’’’% δδpesp0jqq “´δeppAjqpBjpqjRq2`˚BpBqjqp2Sjqq2˚Aqp2jqBRp`jqTBpjqS ˚Yptq (32) “ ´ ˚Yptq δps0q A0Ampjq NowtakingPartialderivativeofEquation(31)w.r.t“s ” 1 δepjq Bpjqq “´ ˚Yptq (33) δps q pA pjqA q 1 m 0 Likewise,PartialderivativeoftheEquation(31)w.r.t“s ”gives 2 δepjq Bpjq “´ ˚Yptq (34) δps q pA pjqA q 2 m 0 ByapplyingtheMITalgorithminthedesiredmodelofthesystem,whereEquations(35)and(36) denotethecostfunctionwhichisbasedontheMITrule. Whitakerdemonstratesthedifferencein systemboundsasafunctionofthesystemerrorandthegradientofthesystemerrorwithrespecttothe systemconstraintsandtakesthepartialderivativeofthegradienterrorwithrespecttoitsconstraints. Theconstraintsoftheparticularmodelwiththeinitialestimate JpKTq,andtherateofchangeofspeed Sensors 2016, 16, 652  9 of 17  δe(cid:4666)j(cid:4667) B(cid:4666)j(cid:4667)TAS (cid:1747) (cid:3404)(cid:3398)(cid:4678) (cid:4679)∗U (cid:4666)t(cid:4667) δ(cid:4666)r (cid:4667) (cid:4666)A(cid:4666)j(cid:4667)R(cid:3397)B(cid:4666)j(cid:4667)S(cid:4667)(cid:2870) (cid:2913) (cid:1750) (cid:2868) (cid:1750) δe(cid:4666)j(cid:4667) B(cid:4666)j(cid:4667)TAS A(cid:4666)j(cid:4667)R(cid:3397)B(cid:4666)j(cid:4667)S (cid:3404)(cid:3398)(cid:4678) (cid:4679)∗ ∗Y(cid:4666)t(cid:4667)  (29) (cid:1748)δ(cid:4666)r (cid:4667) (cid:4666)A(cid:4666)j(cid:4667)R(cid:3397)B(cid:4666)j(cid:4667)S(cid:4667)(cid:2870) B(cid:4666)j(cid:4667)T (cid:2868) (cid:1750)(cid:1750) δe(cid:4666)j(cid:4667) (cid:1827)(cid:1845) (cid:3404)(cid:3398) ∗Y(cid:4666)t(cid:4667) (cid:1749) δ(cid:4666)r (cid:4667) A A (cid:4666)j(cid:4667) (cid:2868) (cid:2868) (cid:2923) Partial differentiate Equation (25) w.r.t “r ”:  (cid:2869) δe(cid:4666)j(cid:4667) A(cid:4666)q(cid:4667) (cid:3404)(cid:3398) ∗Y(cid:4666)t(cid:4667)  (30) δ(cid:4666)r (cid:4667) A A (cid:4666)j(cid:4667) (cid:2869) (cid:2868) (cid:2923) Put the value of S, S(cid:3404)(cid:4666)s ∗q(cid:2870)(cid:3397)s ∗q+s (cid:4667) in Equation (24):   (cid:2868) (cid:2869) (cid:2870) B(cid:4666)j(cid:4667)T e(cid:4666)j(cid:4667)(cid:3404) ∗U (cid:4666)t(cid:4667)(cid:3398)(cid:4666)Y (cid:4667)  (31) A(cid:4666)j(cid:4667)R(cid:3397)B(cid:4666)j(cid:4667)(cid:4666)s q(cid:2870)(cid:3397)s q(cid:3397)s (cid:4667) (cid:2913) (cid:2923) (cid:2868) (cid:2869) (cid:2870) Now the Partial derivative of Equation (31) w.r.t "s ":  (cid:2868) δe(cid:4666)j(cid:4667) (cid:4666)B(cid:4666)j(cid:4667)(cid:2870)∗q(cid:2870)(cid:4667) (cid:1747) (cid:3404)(cid:3398) ∗U (cid:4666)t(cid:4667) δ(cid:4666)s (cid:4667) (cid:4666)A(cid:4666)j(cid:4667)R(cid:3397)B(cid:4666)j(cid:4667)S(cid:4667)(cid:2870) (cid:2913) (cid:1750)(cid:1750) (cid:2868) δe(cid:4666)j(cid:4667) (cid:4666)B(cid:4666)j(cid:4667)(cid:2870)∗q(cid:2870)(cid:4667) A(cid:4666)j(cid:4667)R(cid:3397)B(cid:4666)j(cid:4667)S (cid:3404)(cid:3398) ∗Y(cid:4666)t(cid:4667)  (32) (cid:1748)δ(cid:4666)s(cid:2868)(cid:4667) (cid:4666)A(cid:4666)j(cid:4667)R(cid:3397)B(cid:4666)j(cid:4667)S(cid:4667)(cid:2870) B(cid:4666)j(cid:4667)T (cid:1750)(cid:1750) δe(cid:4666)j(cid:4667) B(cid:4666)j(cid:4667)∗q(cid:2870) (cid:3404) (cid:3398) ∗Y(cid:4666)t(cid:4667) (cid:1749) δ(cid:4666)s (cid:4667) A A (cid:4666)j(cid:4667) (cid:2868) (cid:2868) (cid:2923) Now taking Partial derivative of Equation (31) w.r.t "s "  (cid:2869) δe(cid:4666)j(cid:4667) B(cid:4666)j(cid:4667)q (cid:3404)(cid:3398) ∗Y(cid:4666)t(cid:4667)  (33) δ(cid:4666)s (cid:4667) (cid:4666)A (cid:4666)j(cid:4667)A (cid:4667) (cid:2869) (cid:2923) (cid:2868) Likewise, Partial derivative of the Equation (31) w.r.t "s " gives  (cid:2870) δe(cid:4666)j(cid:4667) B(cid:4666)j(cid:4667) (cid:3404)(cid:3398) ∗Y(cid:4666)t(cid:4667)  (34) δ(cid:4666)s (cid:4667) (cid:4666)A (cid:4666)j(cid:4667)A (cid:4667) (cid:2870) (cid:2923) (cid:2868) By applying the MIT algorithm in the desired model of the system, where Equations (35) and  (36) denote the cost function which is based on the MIT rule. Whitaker demonstrates the difference  in system bounds as a function of the system error and the gradient of the system error with respect  to the system constraints and takes the partial derivative of the gradient error with respect to its  Sensors2016,16, 652 10of18 constraints. The constraints of the particular model with the initial estimate (cid:1836)(cid:4666)(cid:1837)(cid:1846)(cid:4667), and the rate of  change of speed among the desired and actual model is taken from [36]. To minimize the error with  respeacmt oton gtitmhee dseos itrheadt atnhde adcetusiarlemd ordeseploisntsaek eisn afrcohmiev[3e6d] .rTeoqumiriensim ainz eotphteimerurmor wcointhtrroels pweicttht ocotismt eso functtihoant. thedesiredresponseisachievedrequiresanoptimumcontrolwithcostfunction. ` ˘ TheoTrhemeo r3e. mIn3 [.2I0n] [t2h0e ]lethasetl esaqsutasrqeu easrteimesattiimona t(cid:1836)io(cid:4666)(cid:1837)(cid:3364)n(cid:3364)(cid:3364)(cid:1846)(cid:3364)J(cid:4667) KanTd tahneidr tphoeliyrnpoomlyinalo mchiaarlacchtaerriascttiecr sisotliuctisoonlu dtieopnenddesp ends uponu tphoe nDtihoephDainotpihnaen etqinueateiqouna atniodn satnabdilsittayb oilfi t(cid:1827)yof. ACm. (cid:3004)(cid:3040) ProofofTheorem3. ThesolutionalsodependsupontheDiophantineequationaswellasthestability Proof of Theorem 3. The solution also depends upon the Diophantine equation as well as the stability  of A . ByusingTheorem2: of (cid:1827) . ByCm using Theorem 2:  (cid:3004)(cid:3040) ` ˘ 1. 1I.f (cid:1857)(cid:4666)(cid:1862)I(cid:4667)f →epj0q Ñas 0(cid:1864) →as∞l Ñ an8d laenaddilnegad (cid:1836)i(cid:4666)n(cid:1837)(cid:3364)g(cid:3364)(cid:3364)(cid:1846)(cid:3364)J(cid:4667)(cid:3404)KT0, t“he 0s,otlhuetisoonl ugtiivoensg tihvee ssmthaellsemsta plloesstitpivoes ivtiavleuev aolfu eof cost fcuonstctfiuonnc. tion. ` ˘ 2. 2 (cid:1827). (cid:3004)(cid:3040) AisC ma icsoantcroandtircatdioicnt,i oifn ,iti fisit nisont osttasbtaleb lferofrmom ThTehoeroermem 22; ;(cid:1857)e(cid:4666)p(cid:1862)j(cid:4667)q⇸00 aassl (cid:1864)Ñ→8∞,, tthhuussJ (cid:1836)(cid:4666)K(cid:1837)(cid:3364)(cid:3364)T(cid:3364)(cid:1846)(cid:3364)(cid:4667)‰`(cid:3405)00..˘ This This iiss nnootto opptitmimalabl ebceacuasues,ea,s asse esneeinn sinte pst1epo f1t hoef pthroeo pf,rtohoefr, ethexeirset seaxissotslu ati osnoltuhtaiotnm tahkaets mJ aKkTes “0. (cid:1836)(cid:4666)(cid:1837)(cid:3364)(cid:3364)(cid:3364)(cid:1846)(cid:3364)(cid:4667)(cid:3404)0. 1 JpK1Tq“ e2pKTq (35) J(cid:4666)KT(cid:4667)(cid:3404) e(cid:2870)(cid:4666)KT2(cid:4667)  (35) 2 dKT l “ ´γ1 y e“ ´γ˚y ˚epjq (36) pdtq l pmq pmq o Afterthat,applytheMITruletoderivatecontrolvariables(s , s , s , r , r , t , andt qandsetin 0 1 2 0 1 0 1 thecontrollergives dps q δe dps q γ q2BpjqYptq 0 “ ´γ 0 “ e (37) dt eδs dt A pjqA 0 m 0 dps q δe dps q γ BpjqqYptq 1 “ ´γ 1 “ e (38) dt eδs dt A pjqA 1 m 0 dps q δe dps q γ BpjqYptq 2 “ ´γ 2 “ e (39) dt eδs dt A pjqA 2 m 0 dpr q δe dpr q γ ApjqqYptq 0 “ ´γ 0 “ e (40) dt eδr dt A pjqA 0 m 0 dpr q δe dpr q γ ApjqYptq 1 “ ´γ 1 “ e (41) dt eδr dt A pjqA 1 m 0 dpt q δe dpt q γ Bpjqq 0 “ ´γ 0 “´ e (42) dt eδt dt A 0 0 dpt q δe dpt q γ 1 “ ´γ 1 “´ e (43) dt eδt dt pA pjqq 1 m Now,themaincontrollerequationbecomes: ˆ ˙ ˜ ¸ pFpT q`T qA q FpS q2`S q`S q U “ 0 1 0 ˚pUcptqq´ `0 1 ˘2 Yptq F´Hybrid∅,θ,Ψ Fpq2`r q`r q F q2`r q`r 0 1 0 1 ThechangeinUAVorientationdependsupontherateofchangeofthecontrolcommands,which makesthesystemrespondquitebettertowardsstabilitybyusingourproposedalgorithm. Thelinguisticslevelsofthefuzzyhybridcontrollerareassignedas(BN)belownegative,(SN) smallnegative,(ZR)zero,(SP)smallpositive,and(BP)bigpositive. Thefuzzylogiccontrollerif-then rulesaredefinedinTables2–4suchthaterror“e”istherotorspeedhavingrangein´10to+10,the derivativeerrorrangeis´5to+5,andtheoutputrangeofthefuzzyhybridcontrolleris0to1with R=0.667,S=0.5,andT=0.5,respectively.

Description:
College of Automation Engineering, Nanjing University of Aeronautics and Sensors 2016, 16, 652; doi:10.3390/s16050652 the polynomial characteristic solution is based on the Diophantine equation Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation; Wileys: New York, NY, USA, 1992.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.