GARY S. WAS Fundamentals of Radiation Materials Science Metals and Alloys Second Edition Fundamentals of Radiation Materials Science Gary S. Was Fundamentals of Radiation Materials Science Metals and Alloys Second Edition 123 Gary S.Was Department ofNuclear Engineering andRadiological Sciences University of Michigan AnnArbor, MI USA ISBN978-1-4939-3436-2 ISBN978-1-4939-3438-6 (eBook) DOI 10.1007/978-1-4939-3438-6 LibraryofCongressControlNumber:2015955871 ©SpringerScience+BusinessMediaNewYork2007,2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHBerlinHeidelberg This book is dedicated to my wife, LeeAnn, and to my sons Adam and Alex for their support and encouragement. Preface Thepurposeofthistextistoprovideafoundationforunderstandingthetheoryand mechanisms behind the effects of irradiation on metals and alloys. The subject is divided into three parts, each of which is subdivided into individual chapters that together provide a unified picture of how radiation interacts with and alters the structure and properties of metallic materials. Part I consists of five chapters that together,focusontheradiationdamageprocessandprovidetheformalismforthe prediction of the amount and spatial configuration of the damage produced by bombarding particles.Chapter 1treatstheinteractions between particles that result in the transfer of energy from the incident particle to the target atoms. Chapter 2 focuses on determination of the number of displacements produced by the bom- barding particles, and Chap. 3 describes the spatial configurations of the resulting defects. Chapter 4 provides background on the equilibrium concentration of point defects and their diffusion. Chapter 5 treats diffusion and reactions between point defects under irradiation that are fundamental to all of the observable effects. While radiation damage describes the state of the irradiated material, radiation effects are concerned with defect behaviour in the solid after formation. Part II (Chaps. 6–11) covers the physical effects of irradiation on metals. Chapter 6 describes radiation-induced segregation, which is a direct consequence of radiation-enhanced diffusion. Chapters 7 and 8 address the nucleation and growth of dislocation loops and voids, the defect aggregates that determine much of the behavior of irradiated alloys. Chapter 9 covers the stability of phases under irra- diationandirradiation-inducedprecipitationandprecipitatedissolution.Chapter10 extends the effects of irradiation to the unique processes resulting from ion irra- diationsuchascompositionchanges,sputtering,andexfoliation.Finally,Chap.11 describes the use of ion irradiation to emulate the effects of neutron irradiation in reactor components. Mechanical and environmental effects of radiation damage (Part III) are distin- guished from physical effects by the application of stress and a corrosive envi- ronment. Hardening and deformation of alloys under irradiation are discussed in vii viii Preface Chap. 12. Creep deformation and growth are treated in Chap. 13, and the effect of irradiation on crack nucleation and propagation resulting either from static or fatigue loading is discussed in Chap. 14. Irradiation also has a profound effect on corrosionandstresscorrosioncrackingasthesedegradationmodesoftenconstitute the limiting processes for many reactor designs. Chapter 15 includes the basics of corrosion and stress corrosion cracking that are required for understanding the combined effects of irradiation, corrosion, and stress discussed in Chap. 16. The chapters contain examples and illustrations of radiation effects and sample calculationstoquantifyanddescribe theobservations. Problemsattheendofeach chapteraredesignedtoreinforcethemainconceptsofeachchapterandtochallenge the reader on his or her comprehension of the topics covered within. Taken toge- ther, the chapter text, examples, illustrations, and end-of-chapter problems provide a comprehensive treatment of the effects of irradiation on metals and alloys. The subject matter in this text will likely require two academic terms to com- plete.Manyofthetopicsrelyonabasicknowledgeofdisciplinesthatconstitutethe underlying basis for irradiation effects: thermodynamics and kinetics of solids, crystal structure, defects and dislocations, physical metallurgy, elasticity and plasticity, deformation and fracture and corrosion and stress corrosion cracking. The text either presents the requisite background for each of these topics, or pro- vides references of other sources where good treatments can be found. This book should also be useful to researchers who would like to learn more about the subject, or who would like a more complete and integrated treatment of the topics than can be found in individual papers on the subject. While the chapters are integrated with one another and each chapter builds upon the sum of the previous chapters, it is possible to read selected chapters for just that topic. Asafinalcomment,theauthorwouldliketonotethatthisbookwaswrittenby sorting, organizing, and condensing information from several texts and numerous journal and conference papers to arrive at a comprehensive description of the processesconstitutingradiationmaterialsscience.Aconscientiouseffortwasmade to acknowledge and give credit to the original sources of the ideas, theories, mathematical developments, and drawings contained herein. For occasional over- sightsthatmayhaveoccurredduringthecondensationprocess,theauthoroffershis apologies.Heisindebtedtothemanyauthorsandpublisherswhoprovidedmaterial and illustrations for this text. Finally, the author wishes to acknowledge the many colleagues, students, and friends who aided and advisedhim inthis work. Inparticular, special thanks goto Jeremy Busby, Todd Allen, Michael Atzmon, Roger Stoller, Yuri Osetsky, Ian Robertson, and Brian Wirth, for their substantive contributions to the content, to ElaineWest,BrianWagner,SeanLemecha,GerritVancoevering,andBryanEyers for their work on the illustrations, to Gerrit Vancoevering for completing and compiling the end of chapter problem solutions, to Cherilyn Davis and Ovidiu Preface ix Toader for their help in manuscript and movie preparation, to Lynn Rehn, Don Olander, Arthur Motta, Michael Nastasi, Steve Zinkle, K. Linga Murty, Lou Mansur,andPeterAndresenfortheirchapterreviews,andtoJohnKingandArden Bementforprovidingtheinspirationtotheauthortopursuethisfieldofstudymany years ago. Ann Arbor Gary S. Was August 2015 Contents Moviesaccompanyingthetextarelocatedat:http://rmsbook2ed.engin.umich.edu/movies/ Part I Radiation Damage 1 The Radiation Damage Event. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Neutron–Nucleus Interactions. . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Elastic Scattering. . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.3 (n, 2n) Reactions. . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1.4 (n, γ) Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2 Interactions Between Ions and Atoms . . . . . . . . . . . . . . . . . . 18 1.2.1 Interatomic Potentials. . . . . . . . . . . . . . . . . . . . . . 19 1.2.2 Collision Kinematics . . . . . . . . . . . . . . . . . . . . . . 26 1.3 Energy Loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.3.1 Energy Loss Theory . . . . . . . . . . . . . . . . . . . . . . 45 1.3.2 Range Calculations . . . . . . . . . . . . . . . . . . . . . . . 60 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2 The Displacement of Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 2.1 Elementary Displacement Theory . . . . . . . . . . . . . . . . . . . . . 77 2.1.1 Displacement Probability . . . . . . . . . . . . . . . . . . . 78 2.1.2 The Kinchin and Pease Model for Atom Displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.1.3 The Displacement Energy. . . . . . . . . . . . . . . . . . . 82 2.1.4 The Electron Energy Loss Limit . . . . . . . . . . . . . . 87 2.2 Modifications to the K–P Displacement Model. . . . . . . . . . . . 90 2.2.1 Consideration of E in the Energy Balance. . . . . . . 90 d 2.2.2 Realistic Energy Transfer Cross Sections . . . . . . . . 90 2.2.3 Energy Loss by Electronic Excitation. . . . . . . . . . . 92 2.2.4 Effects of Crystallinity. . . . . . . . . . . . . . . . . . . . . 95 xi xii Contents 2.3 The Displacement Cross Section. . . . . . . . . . . . . . . . . . . . . . 110 2.3.1 Elastic Scattering. . . . . . . . . . . . . . . . . . . . . . . . . 111 2.3.2 Inelastic Scattering . . . . . . . . . . . . . . . . . . . . . . . 112 2.3.3 (n, 2n) and (n, γ) Displacements. . . . . . . . . . . . . . 112 2.3.4 Modifications to the K–P Model and Total Displacement Cross Section . . . . . . . . . . . . . . . . . 113 2.4 Displacement Rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 2.5 Correlation of Property Changes and Irradiation Dose. . . . . . . 118 2.6 Displacements from Charged Particle Irradiation. . . . . . . . . . . 120 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 3 The Damage Cascade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 3.1 Displacement Mean Free Path . . . . . . . . . . . . . . . . . . . . . . . 131 3.2 Primary Recoil Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.3 Cascade Damage Energy and Cascade Volume. . . . . . . . . . . . 138 3.4 Computer Simulation of Radiation Damage. . . . . . . . . . . . . . 139 3.4.1 Binary Collision Approximation (BCA) Method . . . 140 3.4.2 Molecular Dynamics (MD) Method. . . . . . . . . . . . 141 3.4.3 Kinetic Monte Carlo (KMC) Method. . . . . . . . . . . 146 3.5 Stages of Cascade Development. . . . . . . . . . . . . . . . . . . . . . 150 3.6 Behavior of Defects Within the Cascade . . . . . . . . . . . . . . . . 152 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4 Point Defect Formation and Diffusion. . . . . . . . . . . . . . . . . . . . . . 167 4.1 Properties of Irradiation-Induced Defects. . . . . . . . . . . . . . . . 167 4.1.1 Interstitials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.1.2 Multiple Interstitials. . . . . . . . . . . . . . . . . . . . . . . 172 4.1.3 Interstitial–Impurity Complexes. . . . . . . . . . . . . . . 173 4.1.4 Vacancies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 4.1.5 Multiple Vacancies . . . . . . . . . . . . . . . . . . . . . . . 174 4.1.6 Solute–Defect and Impurity–Defect Clusters. . . . . . 176 4.2 Thermodynamics of Point Defect Formation . . . . . . . . . . . . . 176 4.3 Diffusion of Point Defects. . . . . . . . . . . . . . . . . . . . . . . . . . 180 4.3.1 Macroscopic Description of Diffusion . . . . . . . . . . 180 4.3.2 Mechanisms of Diffusion . . . . . . . . . . . . . . . . . . . 181 4.3.3 Microscopic Description of Diffusion. . . . . . . . . . . 185 4.3.4 Jump Frequency, Γ . . . . . . . . . . . . . . . . . . . . . . . 188 4.3.5 Jump Frequency, ω. . . . . . . . . . . . . . . . . . . . . . . 190 4.3.6 Equations for D . . . . . . . . . . . . . . . . . . . . . . . . . 192 4.4 Correlated Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 4.5 Diffusion in Multicomponent Systems. . . . . . . . . . . . . . . . . . 198 4.6 Diffusion Along High-Diffusivity Paths. . . . . . . . . . . . . . . . . 199 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Description: