ebook img

Fundamentals of Microelectronics Solutions Manual PDF

1115 Pages·028.782 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Microelectronics Solutions Manual

Solutions Manual to Accompany  Fundamentals of Microelectronics, 1st Edition  Book ISBN: 978‐0‐471‐47846‐1  Razavi    All materials copyrighted and published by John Wiley & Sons, Inc.   Not for duplication or distribution 2.1 (a) k =8.617×10−5 eV/K 0.66eV n (T =300K)=1.66×1015(300K)3/2exp − cm−3 i 2(8.617×10−5 eV/K)(300K) (cid:20) (cid:21) = 2.465×1013 cm−3 0.66eV n (T =600K)=1.66×1015(600K)3/2exp − cm−3 i 2(8.617×10−5 eV/K)(600K) (cid:20) (cid:21) = 4.124×1016 cm−3 ComparedtothevaluesobtainedinExample2.1,wecanseethattheintrinsiccarrierconcentration in Ge at T = 300K is 2.465×1013 = 2282 times higher than the intrinsic carrier concentration in 1.08×1010 SiatT =300K. Similarly,atT =600K, the intrinsic carrierconcentrationin Ge is 4.124×1016 = 1.54×1015 26.8 times higher than that in Si. (b) Since phosphorus is a Group V element, it is a donor, meaning N = 5×1016 cm−3. For an D n-type material, we have: n=N = 5×1016 cm−3 D [n (T =300K)]2 p(T =300K)= i = 1.215×1010 cm−3 n [n (T =600K)]2 p(T =600K)= i = 3.401×1016 cm−3 n 2.3 (a) Since the doping is uniform, we have no diffusion current. Thus, the total current is due only to the drift component. I =I tot drift =q(nµ +pµ )AE n p n=1017 cm−3 p=n2/n=(1.08×1010)2/1017 =1.17×103 cm−3 i µ =1350cm2/V·s n µ =480cm2/V·s p 1V E =V/d= 0.1µm =105 V/cm A=0.05µm×0.05µm =2.5×10−11 cm2 Since nµ ≫pµ , we can write n p I ≈qnµ AE tot n = 54.1µA (b) All of the parameters are the same except n , which means we must re-calculate p. i n (T =400K)=3.657×1012 cm−3 i p=n2/n=1.337×108 cm−3 i Since nµ ≫ pµ still holds (note that n is 9 orders of magnitude larger than p), the hole n p concentration once again drops out of the equation and we have I ≈qnµ AE tot n = 54.1µA 2.4 (a) From Problem 1, we can calculate n for Ge. i n (T =300K)=2.465×1013 cm−3 i I =q(nµ +pµ )AE tot n p n=1017 cm−3 p=n2/n=6.076×109 cm−3 i µ =3900cm2/V·s n µ =1900cm2/V·s p 1V E =V/d= 0.1µm =105 V/cm A=0.05µm×0.05µm =2.5×10−11 cm2 Since nµ ≫pµ , we can write n p I ≈qnµ AE tot n = 156µA (b) All of the parameters are the same except n , which means we must re-calculate p. i n (T =400K)=9.230×1014 cm−3 i p=n2/n=8.520×1012 cm−3 i Since nµ ≫ pµ still holds (note that n is 5 orders of magnitude larger than p), the hole n p concentration once again drops out of the equation and we have I ≈qnµ AE tot n = 156µA 2.5 Sincethere’snoelectricfield,thecurrentisdueentirelytodiffusion. Ifwedefinethecurrentaspositive when flowing in the positive x direction, we can write dn dp I =I =AJ =Aq D −D tot diff diff n p dx dx (cid:20) (cid:21) A=1µm×1µm=10−8 cm2 D =34cm2/s n D =12cm2/s p dn 5×1016 cm−3 =− =−2.5×1020 cm−4 dx 2×10−4 cm dp 2×1016 cm−3 = =1020 cm−4 dx 2×10−4 cm I = 10−8 cm2 1.602×10−19 C 34cm2/s −2.5×1020 cm−4 − 12cm2/s 1020 cm−4 tot =(cid:0)−15.54µA(cid:1)(cid:0) (cid:1)(cid:2)(cid:0) (cid:1)(cid:0) (cid:1) (cid:0) (cid:1)(cid:0) (cid:1)(cid:3) 2.8 AssumethediffusionlengthsL andL areassociatedwiththeelectronsandholes,respectively,inthis n p material and that L ,L ≪ 2µm. We can express the electron and hole concentrations as functions n p of x as follows: n(x)=Ne−x/Ln p(x)=Pe(x−2)/Lp 2 # of electrons= an(x)dx Z0 2 = aNe−x/Lndx Z0 2 =−aNL e−x/Ln n 0 =−aNL (cid:16)e−2/Ln(cid:17)−(cid:12)(cid:12)1 n (cid:12) 2 (cid:16) (cid:17) # of holes= ap(x)dx Z0 2 = aPe(x−2)/Lpdx Z0 2 =aPL e(x−2)/Lp p 0 =aPL (cid:16)1−e−2/L(cid:17)p(cid:12)(cid:12) p (cid:12) (cid:16) (cid:17) Due to our assumption that L ,L ≪2µm, we can write n p e−2/Ln ≈0 e−2/Lp ≈0 # of electrons≈ aNL n # of holes≈ aPL p

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.