ebook img

Fundamentals of Fluid Power Control PDF

510 Pages·2009·6.871 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Fluid Power Control

This page intentionally left blank FUNDAMENTALS OF FLUID POWER CONTROL Thisexcitingnewreferencetextisconcernedwithfluidpowercontrol. Itisanidealreferenceforthepracticingengineerandatextbookfor advancedcoursesinfluidpowercontrol.Inapplicationsinwhichlarge forcesand/ortorquesarerequired,oftenwithafastresponsetime,oil- hydrauliccontrolsystemsareessential.Theyexcelinenvironmentally difficult applications because the drive part can be designed with no electrical components, and they almost always have a more competi- tivepower–weightratiothanelectricallyactuatedsystems.Fluidpower systemshavethecapabilitytocontrolseveralparameters,suchaspres- sure,speed,andposition,toahighdegreeofaccuracyathighpower levels.Inpractice,therearemanyexcitingchallengesfacingthefluid powerengineer,whonowmusthaveabroadskillset. John Watton entered industry in 1960 working on the design of heat exchangers.HethenstudiedMechanicalEngineeringatCardiffUni- versity,obtaininghisBScdegreefollowedbyhisPhDdegree.In1969, hereturnedtoindustryasaSeniorSystemsEngineerworkingonthe electrohydraulic control of guided pipe-laying machines. Following a period at Huddersfield University, he returned to Cardiff University in 1979 and was appointed Professor of Fluid Power in 1996, receiv- inghisDScdegreeinthesameyear.HewasawardedtheInstitutionof MechanicalEngineersBramahMedalin1999andaspecialawardfrom theJapanFluidPowerSocietyin2005,bothforoutstandingresearch contributionstofluidpower. ProfessorWattonhasbeencontinuallyactiveasaresearcherand consultantwithindustryinthepast40years.Hehasworkedoncom- ponentsandsystemsdesign,manufacturingplantmonitoring,andthe designofnewmobilemachines,andhehasactedasanExpertWitness onavarietyoffluidpowerissues.HeisaCharteredEngineer,aFellow ofthe Institution of MechanicalEngineers, and was elected a Fellow oftheRoyalAcademyofEngineeringin2007. Fundamentals of Fluid Power Control John Watton,DScFREng CardiffUniversity,SchoolofEngineering CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521762502 © John Watton 2009 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2009 ISBN-13 978-0-511-60436-2 eBook (EBL) ISBN-13 978-0-521-76250-2 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface pagexi 1 Introduction,Applications,andConcepts. . . . . . . . . . . . . . . . . . . .1 1.1 TheNeedforFluidPower 1 1.2 CircuitsandSymbols 8 1.3 PumpsandMotors 11 1.4 Cylinders 16 1.5 Valves 17 1.6 Servoactuators 25 1.7 PowerPacksandAncillaryComponents 26 1.8 ReferencesandFurtherReading 31 2 AnIntroductiontoFluidProperties . . . . . . . . . . . . . . . . . . . . . . 33 2.1 FluidTypes 33 2.2 FluidDensity 39 2.3 FluidViscosity 40 2.4 BulkModulus 41 2.5 FluidCleanliness 49 2.6 FluidVaporPressureandCavitation 50 2.7 Electrorheological(ER)FluidsandMagnetorheological(MR) Fluids 54 2.8 ReferencesandFurtherReading 58 3 Steady-StateCharacteristicsofCircuitComponents. . . . . . . . . . . . .61 3.1 FlowThroughPipes 61 3.1.1 TheEnergyEquation 61 3.1.2 LaminarandTurbulentFlowinPipes;theEffect ofFluidViscosity 62 3.1.3 TheNavier–StokesEquation 62 3.1.4 LaminarFlowinaCircularPipe 64 3.1.5 TheGeneralPressure-DropEquation 66 3.1.6 TemperatureRisein3DFlow 68 3.1.7 ComputationalFluidDynamics(CFD)SoftwarePackages 69 v vi Contents 3.2 Restrictors,ControlGaps,andLeakageGaps 74 3.2.1 Types 74 3.2.2 Orifice-TypeRestrictors 74 3.2.3 FlowBetweenParallelPlates 80 3.2.4 FlowBetweenAnnularGaps 81 3.2.5 FlowBetweenanAxialPistonPumpSlipperand ItsSwashPlate 82 3.2.6 FlowBetweenaBallandSocket 89 3.2.7 FlowBetweenNonparallelPlates–ReynoldsEquation 90 3.2.8 FlowThroughSpoolValvesoftheServovalveType andtheUseofaCFDPackageforAnalysis 95 3.2.9 FlowCharacteristicsofaCone-SeatedPoppetValve 100 3.2.10 ADoubleFlapper–NozzleDevicefor Pressure-DifferentialGeneration 104 3.2.11 TheJetPipeandDeflector-JetFluidicAmplifier 109 3.3 Steady-StateFlow-ReactionForces 112 3.3.1 BasicConcepts 112 3.3.2 ApplicationtoaSimplePoppetValve 112 3.3.3 ApplicationtotheMainStageofaTwo-Stage Pressure-ReliefValve 113 3.3.4 ApplicationtoaSpoolValve 115 3.3.5 ApplicationtoaCone-SeatedPoppetValve 117 3.3.6 ApplicationtoaFlapper–NozzleStage 119 3.4 OtherForcesonComponents 120 3.4.1 StaticandShear-StressComponents 120 3.4.2 TransientFlow-ReactionForces 121 3.5 TheElectrohydraulicServovalve 122 3.5.1 ServovalveTypes 122 3.5.2 ServovalveRating 123 3.5.3 FlowCharacteristics,CriticallyLappedSpool 125 3.5.4 ServovalvewithForceFeedback 127 3.5.5 ServovalvewithSpool-PositionElectrical Feedback 129 3.5.6 FlowCharacteristics,UnderlappedSpool 130 3.6 Positive-DisplacementPumpsandMotors 133 3.6.1 FlowandTorqueCharacteristicsofPositive- DisplacementMachines 133 3.6.2 GeometricalDisplacementofaPositive-Displacement Machine 137 3.6.3 FlowLossesforanAxialPistonMachine 142 3.6.4 TorqueLossesforanAxialPistonMachine 148 3.6.5 MachineEfficiency–AxialPistonPump 152 3.6.6 MachineEfficiency–AxialPistonMotor 155 3.7 Pressure-ReliefValvePressure–FlowConcepts 158 3.8 SizinganAccumulator 159 3.9 DesignofExperiments 161 3.10ReferencesandFurtherReading 163 Contents vii 4 Steady-StatePerformanceofSystems . . . . . . . . . . . . . . . . . . . . . 171 4.1 DeterminingthePowerSupplyPressureVariationduring OperationforaPump–PRV–ServovalveCombination: AGraphicalApproach 171 4.2 Meter-OutFlowControlofaCylinder 172 4.3 AComparisonofCounterbalance-ValveandanOvercenter-Valve PerformancestoAvoidLoadRunaway 174 4.4 DriveConcepts 177 4.5 PumpandMotorHydraulicallyConnected:AHydrostaticDrive 179 4.6 PumpandMotorShaftConnected:APowerTransferUnit(PTU) 183 4.7 Servovalve–MotorOpen-LoopandClosed-LoopSpeedDrives 189 4.7.1 Open-LoopControl 189 4.7.2 Closed-LoopControl 192 4.8 Servovalve–LinearActuator 195 4.8.1 Extending 195 4.8.2 Retracting 196 4.8.3 AComparisonofExtendingandRetractingOperations 198 4.9 Closed-LoopPositionControlofanActuatorbyaServovalve withaSymmetricallyUnderlappedSpool 200 4.10LinearizationofaValve-ControlledMotorOpen-Loop Drive:TowardIntelligentControl 203 4.11ReferencesandFurtherReading 207 5 SystemDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 5.1 Introduction 209 5.2 MassFlow-RateContinuity 211 5.3 ForceandTorqueEquationsforActuators 211 5.4 SolvingtheSystemEquations,ComputerSimulation 213 5.5 DifferentialEquations,LaplaceTransforms,andTransfer Functions 216 5.5.1 LinearDifferentialEquations 216 5.5.2 NonlinearDifferentialEquations,theTechniqueof LinearizationforSmall-SignalAnalysis 219 5.5.3 UndampedNaturalFrequencyofaLinearActuator 221 5.5.4 LaplaceTransformsandTransferFunctions 223 5.6 TheElectricalAnalogy 225 5.7 FrequencyResponse 229 5.8 OptimumTransferFunctions,theITAECriterion 235 5.9 ApplicationtoaServovalve–MotorOpen-LoopDrive 239 5.9.1 FormingtheEquations 239 5.9.2 AnEstimateofDynamicBehaviorbyaLinearized Analysis 239 5.9.3 AComparisonofNonlinearandLinearizedEquations UsingthePhase-PlaneMethod 244 5.10ApplicationtoaServovalve–LinearActuatorOpen-LoopDrive 245 5.10.1 FormingtheEquations 245 5.10.2 AnEstimateofDynamicBehaviorbyaLinearized Analysis 247 viii Contents 5.10.3 TransferFunctionSimplificationforaDouble-Rod Actuator 248 5.11FurtherConsiderationsoftheNonlinearFlow-Continuity EquationsofaServovalveConnectedtoaMotoror aDouble-RodLinearActuator 249 5.12TheImportanceofShortConnectingLinesWhentheLoad MassIsSmall 250 5.13ASingle-StagePRVwithDirectionalDamping 253 5.13.1 Introduction 253 5.13.2 FormingtheEquations,TransientResponse 255 5.13.3 FrequencyResponsefromaLinearizedTransfer FunctionAnalysis 257 5.14ServovalveDynamics 259 5.15AnOpen-LoopServovalve–MotorDrivewithLineDynamics ModeledbyLumpedApproximations 261 5.16TransmissionLineDynamics 265 5.16.1 Introduction 265 5.16.2 LosslessLineModelforZandY 267 5.16.3 AverageandDistributedLineFrictionModels forZandY 270 5.16.4 Frequency-DomainAnalysis 271 5.16.5 Servovalve-ReflectedLinearizedCoefficients 275 5.16.6 ModelingSystemswithNonlosslessTransmission Lines,theModalAnalysisMethod 278 5.16.7 ModalAnalysisAppliedtoaServovalve–Motor Open-LoopDrive 282 5.17TheState-SpaceMethodforLinearSystemsModeling 285 5.17.1 ModelingPrinciples 285 5.17.2 SomeFurtherAspectsoftheTime-DomainSolution 291 5.17.3 TheTransferFunctionConceptinStateSpace 292 5.18Data-BasedDynamicModeling 293 5.18.1 Introduction 293 5.18.2 Time-SeriesModeling 294 5.18.3 TheGroupMethodofDataHandling(GMDH) Algorithm 296 5.18.4 ArtificialNeuralNetworks 297 5.18.5 AComparisonofTime-Series,GMDH,andANN ModelingofaSecond-OrderDynamicSystem 300 5.18.6 Time-SeriesModelingofaPositionControlSystem 304 5.18.7 Time-SeriesModelingforFaultDiagnosis 306 5.18.8 Time-SeriesModelingofaProportionalPRV 309 5.18.9 GMDHModelingofaNitrogen-FilledAccumulator 311 5.19SomeCommentsontheEffectofCoulombFriction 314 5.20ReferencesandFurtherReading 318 6 ControlSystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 6.1 IntroductiontoBasicConcepts,theHydromechanicalActuator 323 6.2 StabilityofClosed-LoopLinearSystems 326

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.