ebook img

Fundamentals of Engineering Numerical Analysis PDF

258 Pages·2010·4.547 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Engineering Numerical Analysis

This page intentionally left blank FUNDAMENTALS OF ENGINEERING NUMERICAL ANALYSIS SECOND EDITION Sincetheoriginalpublicationofthisbook,availablecomputerpowerhasincreased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the keyadditionisanintroductiontothefiniteelementmethod.Thisisawidelyused technique for solving partial differential equations (PDEs) in complex domains. Thistextintroducesnumericalmethodsandshowshowtodevelop,analyze,anduse them.CompleteMATLABprogramsforalltheworkedexamplesarenowavailable at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along withmasteringthefundamentalsofnumericalmethods,studentswilllearntowrite theirowncomputerprogramsusingstandardnumericalmethods. Parviz Moin is the Franklin P. and Caroline M. Johnson Professor of Mechanical Engineering at Stanford University. He is the founder of the Center for Turbu- lence Research and the Stanford Institute for Computational and Mathematical Engineering.Hepioneeredtheuseofhigh-fidelitynumericalsimulationsandmas- sivelyparallelcomputersforthestudyofturbulencephysics.ProfessorMoinisa Fellow of the American Physical Society, American Institute of Aeronautics and Astronautics, and the American Academy of Arts and Sciences. He is a Member oftheNationalAcademyofEngineering. FUNDAMENTALS OF ENGINEERING NUMERICAL ANALYSIS SECOND EDITION PARVIZ MOIN StanfordUniversity CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore, Sa˜oPaulo,Delhi,Dubai,Tokyo,MexicoCity CambridgeUniversityPress 32AvenueoftheAmericas,NewYork,NY10013-2473,USA www.cambridge.org Informationonthistitle:www.cambridge.org/9780521711234 (cid:1)C ParvizMoin2010 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2010 PrintedintheUnitedStatesofAmerica AcatalogrecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloginginPublicationdata Moin,Parviz. Fundamentalsofengineeringnumericalanalysis/ParvizMoin.–2nded. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-88432-7(hardback) 1.Engineeringmathematics. 2.Numericalanalysis. I.Title. II.Title:Engineeringnumericalanalysis. TA335.M65 2010 620.001(cid:2)518–dc22 2010009012 ISBN978-0-521-88432-7Hardback ISBN978-0-521-71123-4Paperback Additionalresourcesforthispublicationatwww.cambridge.org/Moin CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyInternetWebsitesreferredtoin thispublicationanddoesnotguaranteethatanycontentonsuchWebsitesis, orwillremain,accurateorappropriate. Contents PrefacetotheSecondEdition pageix PrefacetotheFirstEdition xi 1 INTERPOLATION 1 1.1 LagrangePolynomialInterpolation 1 1.2 CubicSplineInterpolation 4 Exercises 8 FurtherReading 12 2 NUMERICAL DIFFERENTIATION – FINITE DIFFERENCES 13 2.1 ConstructionofDifferenceFormulasUsingTaylorSeries 13 2.2 AGeneralTechniqueforConstructionofFiniteDifference Schemes 15 2.3 AnAlternativeMeasurefortheAccuracyofFinite Differences 17 2.4 Pade´ Approximations 20 2.5 Non-UniformGrids 23 Exercises 25 FurtherReading 29 3 NUMERICAL INTEGRATION 30 3.1 TrapezoidalandSimpson’sRules 30 3.2 ErrorAnalysis 31 3.3 TrapezoidalRulewithEnd-Correction 34 3.4 RombergIntegrationandRichardsonExtrapolation 35 3.5 AdaptiveQuadrature 37 3.6 GaussQuadrature 40 Exercises 44 FurtherReading 47 v vi CONTENTS 4 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 48 4.1 InitialValueProblems 48 4.2 NumericalStability 50 4.3 StabilityAnalysisfortheEulerMethod 52 4.4 ImplicitorBackwardEuler 55 4.5 NumericalAccuracyRevisited 56 4.6 TrapezoidalMethod 58 4.7 LinearizationforImplicitMethods 62 4.8 Runge–KuttaMethods 64 4.9 Multi-StepMethods 70 4.10 SystemofFirst-OrderOrdinaryDifferentialEquations 74 4.11 BoundaryValueProblems 78 4.11.1 ShootingMethod 79 4.11.2 DirectMethods 82 Exercises 84 FurtherReading 100 5 NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 101 5.1 Semi-Discretization 102 5.2 vonNeumannStabilityAnalysis 109 5.3 ModifiedWavenumberAnalysis 111 5.4 ImplicitTimeAdvancement 116 5.5 AccuracyviaModifiedEquation 119 5.6 DuFort–FrankelMethod:AnInconsistentScheme 121 5.7 Multi-Dimensions 124 5.8 ImplicitMethodsinHigherDimensions 126 5.9 ApproximateFactorization 128 5.9.1 StabilityoftheFactoredScheme 133 5.9.2 AlternatingDirectionImplicitMethods 134 5.9.3 MixedandFractionalStepMethods 136 5.10 EllipticPartialDifferentialEquations 137 5.10.1 IterativeSolutionMethods 140 5.10.2 ThePointJacobiMethod 141 5.10.3 Gauss–SeidelMethod 143 5.10.4 SuccessiveOverRelaxationScheme 144 5.10.5 MultigridAcceleration 147 Exercises 154 FurtherReading 166 6 DISCRETE TRANSFORM METHODS 167 6.1 FourierSeries 167 6.1.1 DiscreteFourierSeries 168 6.1.2 FastFourierTransform 169 6.1.3 FourierTransformofaRealFunction 170 6.1.4 DiscreteFourierSeriesinHigherDimensions 172 CONTENTS vii 6.1.5 DiscreteFourierTransformofaProductofTwo Functions 173 6.1.6 DiscreteSineandCosineTransforms 175 6.2 ApplicationsofDiscreteFourierSeries 176 6.2.1 DirectSolutionofFiniteDifferencedEllipticEquations 176 6.2.2 DifferentiationofaPeriodicFunctionUsingFourier SpectralMethod 180 6.2.3 NumericalSolutionofLinear,ConstantCoefficient DifferentialEquationswithPeriodicBoundary Conditions 182 6.3 MatrixOperatorforFourierSpectralNumerical Differentiation 185 6.4 DiscreteChebyshevTransformandApplications 188 6.4.1 NumericalDifferentiationUsingChebyshevPolynomials 192 6.4.2 QuadratureUsingChebyshevPolynomials 195 6.4.3 MatrixFormofChebyshevCollocationDerivative 196 6.5 MethodofWeightedResiduals 200 6.6 TheFiniteElementMethod 201 6.6.1 ApplicationoftheFiniteElementMethodtoaBoundary ValueProblem 202 6.6.2 ComparisonwithFiniteDifferenceMethod 207 6.6.3 ComparisonwithaPade´ Scheme 209 6.6.4 ATime-DependentProblem 210 6.7 ApplicationtoComplexDomains 213 6.7.1 ConstructingtheBasisFunctions 215 Exercises 221 FurtherReading 226 A A REVIEW OF LINEAR ALGEBRA 227 A.1 Vectors,MatricesandElementaryOperations 227 A.2 SystemofLinearAlgebraicEquations 230 A.2.1 EffectsofRound-offError 230 A.3 OperationsCounts 231 A.4 EigenvaluesandEigenvectors 232 Index 235 ToLinda

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.