ebook img

Fundamental Polymer Science (Graduate Texts in Physics) PDF

501 Pages·2019·6.487 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamental Polymer Science (Graduate Texts in Physics)

Graduate Texts in Physics Ulf W. Gedde Mikael S. Hedenqvist Fundamental Polymer Science Second Edition Graduate Texts in Physics SeriesEditors KurtH.Becker,NYUPolytechnicSchoolofEngineering,Brooklyn,NY,USA Jean-Marc Di Meglio, Matie`re et Syste`mes Complexes, B^atiment Condorcet, Universite´ Paris Diderot,Paris,France SadriHassani,DepartmentofPhysics,IllinoisStateUniversity,Normal,IL,USA MortenHjorth-Jensen,DepartmentofPhysics,Blindern,UniversityofOslo,Oslo,Norway BillMunro,NTTBasicResearchLaboratories,Atsugi,Japan RichardNeeds,CavendishLaboratory,UniversityofCambridge,Cambridge,UK William T. Rhodes, Department of Computer and Electrical Engineering and Computer Science, FloridaAtlanticUniversity,BocaRaton,FL,USA SusanScott,AustralianNationalUniversity,Acton,Australia H. Eugene Stanley, Center for Polymer Studies, Physics Department, Boston University, Boston, MA,USA MartinStutzmann,WalterSchottkyInstitute,TechnicalUniversityofMunich,Garching,Germany AndreasWipf,InstituteofTheoreticalPhysics,Friedrich-Schiller-UniversityJena,Jena,Germany Graduate Texts in Physics GraduateTextsinPhysicspublishescorelearning/teachingmaterialforgraduate-andadvanced-level undergraduatecoursesontopicsofcurrentandemergingfieldswithinphysics,bothpureandapplied. These textbooks serve students at the MS- or PhD-level and their instructors as comprehensive sources of principles, definitions, derivations, experiments and applications (as relevant) for their masteryandteaching,respectively.Internationalinscopeandrelevance,thetextbookscorrespondto coursesyllabisufficientlytoserveasrequiredreading.Theirdidacticstyle,comprehensivenessand coverageoffundamentalmaterialalsomakethemsuitableasintroductionsorreferencesforscientists entering,orrequiringtimelyknowledgeof,aresearchfield. Moreinformationaboutthisseriesathttp://www.springer.com/series/8431 Ulf W. Gedde (cid:129) Mikael S. Hedenqvist Fundamental Polymer Science Second Edition UlfW.Gedde MikaelS.Hedenqvist FibreandPolymerTechnology FibreandPolymerTechnology SchoolofEngineeringSciences SchoolofEngineeringSciences inChemistry,BiotechnologyandHealth inChemistry,BiotechnologyandHealth KTHRoyalInstituteofTechnology KTHRoyalInstituteofTechnology Stockholm,Sweden Stockholm,Sweden ISSN1868-4513 ISSN1868-4521 (electronic) GraduateTextsinPhysics ISBN978-3-030-29792-3 ISBN978-3-030-29794-7 (eBook) https://doi.org/10.1007/978-3-030-29794-7 ©SpringerNatureSwitzerlandAG1999,2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilmsorinanyotherphysicalway,andtransmissionorinformationstorageandretrieval,electronicadaptation,computer software,orbysimilarordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublicationdoesnotimply,even in the absence ofa specific statement,that such names are exemptfrom the relevant protective lawsand regulationsand thereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbookarebelievedtobetrue andaccurateatthedateofpublication.Neitherthepublishernortheauthorsortheeditorsgiveawarranty,expressorimplied, withrespecttothematerialcontainedhereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremains neutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface ThisbookhasitsrootsinthetextbookPolymerPhysicsbyUlfGeddepublishedin1995.Theaddition of a chapter on polymer synthesis and the fact that the chapters labelled “Polymer physics” in fact contain a substantial part of physical chemistry made us change the book title to Fundamental Polymer Science. We extend our gratitude to colleagues in our department who have made contributions to the Polymer Physics book (1995). Maria Conde Bra~na, Kristian Engberg, Anders Hult,Jan-FredrikJansson,Ha˚kanJonsson,SariLaihonen,FredrikSahle´n,MarieLouiseSkytt,G€oran Wiberg, Jens Viebke and Bj€orn Terselius. Dr. Richard Jones, Cavendish Laboratory, University of Cambridge, UK, read through all the chapters and made some very constructive criticisms. Mats Ifwarson,StudsvikMaterialAB,Sweden;JosefKubat,ChalmersUniversityofTechnology,Sweden; andAndrewKeller,UniversityofBristol,UK,madecontributionsintheirspecialtyfields. Fundamental Polymer Science contains 11 chapters discussing the introduction to polymer science, chain conformation basics, rubber elasticity, polymer solutions including polymer blends, polymer melts, rheology, liquid crystals, glassy polymers and glass transition, semicrystalline polymers,crystallizationkinetics,orientedpolymers,polymerchemistryandsolutionstoproblems. The entire volume has matured with better explanations and more material in general. This comes naturally,sincewehavebeenteachingthissubjectformanyyearssince1995.Newtopicshavebeen added. Polysaccharides and proteins are included in essentially all the chapters. One of the keys is that, regardless of the origin of the polymers, synthetic or native, the same general laws must be obeyed.Anewadditionisalsopolyelectrolytes. Eachchapterendswithanumberofproblemsforreaderstosolve.Eachproblemhasasolution, which is presentedinthefinalchapter.Akeyelement isthat itshould bepossibletoreadthe book without a very extensive knowledge of mathematics. It presents the basics and finally reaches an advancedlevel.Thisgivesthebookawiderangeofpossiblereaders:studentsinchemistry,physics, materialsscience,biotechnologyandcivilengineering.Itissuitableforbothmastersstudents,post- graduate (doctoral) students and engineers and scientists who have left academia for industry. The book is rich in illustrations; a picture can tell more than 1000 words. One of the fields which has expanded during the last decades is simulation and modelling, and, as you will see, many of the chapterspresentresultsfromthesenon-physicalexperiments.Thebasicideas withineachtopic are included in the first part of each chapter, and the more novel developments are presented later. However, not everything can be included. We have therefore many references to more specialized texts,and,ingeneral,experimentalfindingsarefollowedbyareference.Finally,butnotleast,itmay be a surprise to readers that we have included a chapter on polymer chemistry, the noble art and science of how to synthesize polymers. This makes the volume much more complete as a polymer sciencetextbook. Many colleagues and fellow scientists are to be thanked: David Bassett, University of Reading, UK, and Bernard Lotz, Institut Charles Sadron, CNRS, France, for providing fantastic electron v vi Preface micrographs and crystal-clear crystalline polymer physics facts and thoughts; Javier Martinez- Salazar, Instituto de Estructura de la Materia, CSIC, Spain; Alejandro Mu¨ller, University of the BasqueCountry,Spain;andGregoryRutledge,MIT,USA,forprovidingdataandinspirationtothe chapters on crystalline polymer physics, including advanced modelling and simulation; Lars Wa˚gbergforteachingusaboutpolyelectrolytes;J€orgBaschnagelformakingglassypolymerphysics more transparent; Maria Skep€o, Lund University, and Joel Markgren, SLU, for valuable inputs and comments regarding protein physics; Lars Berglund, Mats Johansson, Minna Hakkarainen, Fritjof NilssonandJakobWohlert,allcolleaguesatourdepartment,whomadevaluableinputsandideasto manyofthechapters. Both of us are very grateful to the late Richard H. Boyd, a true gentleman and extraordinary scientist,whowasourmentorformanyyears.Hewasthefacultyopponentforbothofuswhenwe defendedourPh.D.theses.Itissadthatheisnolongerwithus,buthisimpactonthisbookispresent. Neither ofushave English asournative language. We havedependedontwogentlemen,Roger Brown (the editor of Polymer Testing for many years) and Anthony Bristow, to make the written languagecorrectandpleasantforyoutoread.AnthonyBristowhasbeenassistingusfor40yearsand reallyisafantasticpersoncombininglanguageskillandanunderstandingofscienceingeneraland polymerscienceinparticular.Gedde’syoungerson,SamuelGedde,hasbeenveryefficientinmaking many of the graphics using Adobe Illustrator. We are very grateful to Maria Bellantone and David Packer, the publishers at Springer Nature. They have been extremely supportive in the process of preparingthebook.Davidgaveustheideatoincludeapolymersynthesischapter,whichmadethe textbookmuchmorecomplete. HewasalsokeentopromotethewritingofthecompanionvolumewiththetitleAppliedPolymer Science, consisting of 11 chapters of which four are devoted to experimental methods: thermal analysis, microscopy, spectroscopy and scattering and chromatography. Simulation and modelling methods is a field that has become very important; one of the chapters is devoted to this emerging field. The mechanical and transport properties (diffusion properties) are special to polymers and of extreme importance and often important parts of student training. They are contained in two of the chapters. Another chapter is devoted to the processing of polymers into products of various types. Polymer composites including nanocomposites are treated. The future of polymer engineering requires that environmental concerns are acknowledged; this is done in a separate chapter. The chapters end with a problem section; the solution to all the problems is put together in the final chapter.Thetwovolumescontainmanycross-references. SeveralreferencesaremadeinthisbookandinthecompanionbookAppliedPolymerScienceto the textbook Essential Classical Thermodynamics authored by Ulf Gedde. This volume will be availablein2020,anditisacompactandcomprehensiveaccountofthesubject. Thepenultimatesectionoftheseacknowledgementsgoestoour‘competitors’,theauthorsofother textbooksinthisscientificfield.Yourtextshavebeenaninspirationandwehavelearnedfromyou. The breadth of the whole field is such that, without your guidance, our mission would have been hopeless.WethereforethankFranciscoBalta´-Calleja,DavidBassett,RichardBoyd,WitoldBrostow, IanM.Campbell,RalphColby,Pierre-GillesdeGennes,JacquezdesCloizeaux,MasaoDoi,Samuel Edwards,PaulFlory,JoelR.Fried,PhillipGeil,WilliamGraessley,CharlesHansen,GerardJannink, HenningKausch,R.Koningsveld,RobertW.Lenz,JamesMark,WayneMattice,GregoryMcKenna, George Odian, Paul Phillips, Michael Rubinstein, Robert Samuels, Grant Smith, Gert Strobl, Leendert Struik, Uli Suter, Leslie Treloar, Leszek Utracki, Ian Ward, Alan Windle, Chris G. Vonk andBernhardWunderlich.Theseauthorshavewrittentextbookswhichhavebeencitedbyus. Preface vii WeareindebtedtothestaffatSpringerNaturefortheirpatienceinwaitingforthemanuscriptto arriveandforperforminganexcellentjobintransformingthemanuscripttothispleasantform.Ms. ChandhiniKuppusamy,ProductionEditoratSpringerNature,Ms. GopalrajChitra,ProjectManager atSpi-Globalaregratefullyacknowledgedforbeingsuchacompetentandconstructiveforceinthese final stages before publication.Weare alsogratefultoourfamiliesRaija andLillifortheir support duringthewritingprocess. Stockholm,Sweden UlfW.Gedde June2019 MikaelS.Hedenqvist Contents 1 IntroductiontoPolymerScience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 ThePolymerConceptandtheIntrinsicAnisotropicProperties ofPolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TheCovalentBond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 SecondaryBonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 ConfigurationandConformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 HomopolymersandCopolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 MolecularArchitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 CommonPolymers:ACollectionofRepeatingUnits andaLittleAboutThermosets. . .. . . . . . .. . . . . .. . . . . . .. . . . . .. . . . . . .. 14 1.8 MolarMass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.9 ThermalTransitionsandPhysicalStructure. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.10 PolymericMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.11 NaturallyExistingPolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.11.1 Proteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.11.2 Polysaccharides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.12 PolymerHistory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.13 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.14 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ConformationsinPolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 MicroscopicViewofConformationalStates. . . . . .. . . . . . .. . . . . .. . . . . . .. 38 2.3 ChainswithPreferredConformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4 ExperimentalDeterminationoftheDimensionsofChainMolecules. . . . . . . . . 45 2.5 CharacteristicDimensionsofPolymerRandomCoils. . . . . . . . . . . . . . . . . . . . 46 2.6 ModelsforCalculatingtheAverageEnd-to-EndDistance ofanEnsembleofStatisticalChains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7 TheEquivalentChain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.8 Worm-likeChains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.9 Random-FlightAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.10 ConformationsinProteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.11 ConformationsinPolysaccharides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 ix x Contents 2.12 Polyelectrolytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.13 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.14 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3 RubberElasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.2 ThermoelasticBehaviourandThermodynamics. . . . . . . . . . . . . . . . . . . . . . . . 78 3.3 TheStatisticalMechanicalTheoryofRubberElasticity. . . . . . . . . . . . . . . . . . 82 3.4 ComparisonofPredictionsMadebyTheoryandExperimentalData. . . . . . . . . 89 3.5 SwellingofRubbersinSolvents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.6 DeviationsfromClassicalStatisticalTheoriesforFinite-Sized andEntangledNetworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.7 LargeDeformationsWhentheGaussianApproximationIsNotValid. . . . . . . . 98 3.8 A200-YearJourneyPresentingModelsforRubberElasticBehaviour. . . . . . . . 101 3.9 NaturallyExistingElastomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.10 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.11 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4 PolymerSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.2 RegularSolutionModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 TheFlory-HugginsTheory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.4 ConcentrationRegimesinPolymerSolutions. . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.5 TheSolubilityParameter. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . 137 4.6 Equation-of-StateTheories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 4.7 PolymerBlends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 4.7.1 AssessmentofMiscibilityofPolymersinBlends. . . . . . . . . . . . . . . . . 145 4.7.2 MiscibilityofPolymersinBlends:PhaseDiagrams andMolecularInterpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.8 AggregationinProteinSolutions:TheEgg-WhiteExample. . . . . . . . . . . . . . . 151 4.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.10 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5 TheGlassyAmorphousState. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.1 IntroductiontoAmorphousPolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 5.2 TheGlassTransitionTemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.2.1 EffectofRepeatingUnitStructureontheGlass TransitionTemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.2.2 TheConceptofFreeVolume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.2.3 EffectofMolecularArchitectureontheGlass TransitionTemperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.2.4 TheGlassTransitionTemperatureofBlends,Copolymers andwithAddedLowMolarMassCompounds(Plasticizers). . . . . . . . 170 5.2.5 EffectofPressureontheGlassTransitionTemperature. . . . . . . . . . . . 174 5.3 Non-equilibriumFeaturesofGlassyPolymersandPhysicalAging. . . . . . . . . . 174 5.3.1 Phenomenology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 5.3.2 TheoriesforPhysicalAging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.4 TheWilliams-Landel-Ferry(WLF)Equation. . . . . . . . . . . . . . . . . . . . . . . . . . 184

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.