ebook img

Functionalization of a Ti based Alloy with Synthesized Recombinant Fibronectin Fragments to ... PDF

279 Pages·2014·3.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functionalization of a Ti based Alloy with Synthesized Recombinant Fibronectin Fragments to ...

Functionalization of a Ti-based Alloy with Synthesized Recombinant Fibronectin Fragments to Improve Cellular Response Carolina Herranz Díez PhD Thesis Doctoral program of Biomedical Engineering Supervised by Dr. JM. Manero Planella Dr. Jordi Guillem Martí Department of Materials Science and Metallurgical Engineering Universitat Politècnica de Catalunya · Barcelona Tech (UPC) July 2014 Cuando me planteé realizar un doctorado, nunca pensé que el tiempo podría pasar tan rápido y tan lento a la vez. Tras cuatro años de trabajo me encuentro escribiendo las últimas líneas. Esta tesis es el producto del trabajo realizado durante estos cuatros años y no habría sido posible sin la colaboración y dedicación de muchas otras personas. En primer lugar, querría dar las gracias a mis directores de tesis, el Dr. José María Manero y el Dr. Jordi Guillem. También me gustaría darle las gracias a los miembros del grupo de Biomaterials, Biomechanics and Tissue Engineering (BBT) del Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica de la ETSEIB porque cada uno de ellos ha participado de una forma u otra en esta tesis. Mención especial merecen Sara Gallinetti y Maria Godoy, sin ellas nada hubiera sido igual. Otro pilar importante en la consecución de esta tesis ha sido el Instituto de Bioingeniería de Cataluña (IBEC) que me abrió sus puertas y puso a mi alcance todos sus recursos. No puedo olvidarme de los investigadores de otros centros o departamentos que se prestaron a colaborar. Gracias al Dr. Benjamin Thierry y a la Dra. Lorena Diéguez del Ian Work Research Institute; a la Dra. Christine Selhuber-Unkel de la Universidad de Kiel; al Dr. Jeremy Schaffer de Fort Wayne Metals Corporation y al Dr. Emilio Jiménez y al Dr. Joan Josep Roa del Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica de la UPC. Gracias a mis padres y a mi hermano por haber estado siempre apoyándome y gracias también a Gonzalo por embarcarse conmigo en esta aventura sin dudarlo ni un segundo. ABSTRACT According to a study of the European Commission, approximately one million hips are replaced by prostheses worldwide every year. The interaction of the human body with foreign materials that are subjected to alternating mechanical load in a highly corrosive environment still provides challenges. The main factors affecting prosthesis failure are stress shielding effect and poor osseointegration. In this thesis the problem of prosthesis failure has been approached from the material and from the osseointegration point of view trying to give a global solution to the problem. Niobium and hafnium, which are demonstrated to be totally biocompatible, were used to design a Ti-based alloy. The effect of the alloying elements regarding microstructure and elastic modulus was studied and the best composition was deeply characterized in terms of microstructure, elastic modulus, corrosion resistance and superficial energy. Recombinant fragments of fibronectin were synthesised spanning the cell attachment site and the heparin binding domain which are important for cell viability. These motifs were used to functionalise the surface of the TiNbHf alloy. Two tethering methods were studied: physisorption and silanisation. Silanisation was not used before to immobilise fibronectin recombinant fragments onto metallic substrates and in this thesis, its good performance was demonstrated. In vitro studies were made with each fragment and with different combinations of the fragments, which showed the importance of the heparin binding domain to obtain a cell response equivalent to that of fibronectin in terms of cell adhesion, proliferation and differentiation. Key words: stress shielding effect, titanium alloy, osseointegration, fibronectin, recombinant protein, biofunctionalisation, in vitro cell culture. I RESUMEN De acuerdo con un estudio de la Comisión Europea, aproximadamente un millón de caderas son remplazadas por prótesis en el mundo anualmente. La interacción del cuerpo humano con materiales externos sujetos a una carga mecánica alternante en un medio altamente corrosivo todavía presenta ciertos desafíos. Los factores que contribuyen principalmente al fallo de una prótesis son el apantallamiento de cargas y la pobre osteointegracion. En la presente tesis el problema de la fallida de prótesis ha sido abordado desde el punto de vista del material y de la osteointegracion en un intento de dar una solución global al problema El niobio y el hafnio, cuya total biocompatibilidad ha sido demostrada, se han utilizado para diseñar una aleación de titanio. El efecto de dichos aleantes respecto a la microestructura y el módulo elástico ha sido estudiado y la mejor composición ha sido profundamente caracterizada en términos de microestructura, módulo elástico, resistencia a la corrosión y energía superficial. Fragmentos recombinados de fibronectina han sido sintetizados abarcando la zona de adhesión celular y la unión de heparina, las cuales son esenciales para la viabilidad celular. Dichos motivos han sido utilizados para funcionalizar la superficie de la aleación TiNbHf. Dos métodos de unión diferentes han sido estudiados: fisisorción y silanización. La silanización es un método que no se ha utilizado hasta el momento para inmovilizar fragmentos de fibronectina sobre superficies metálicas y en la presente tesis su idoneidad ha sido demostrada. Finalmente, estudios celulares in vitro se han llevado a cabo con cada fragmento y con diferentes combinaciones de ambos, lo cual ha mostrado la importancia de la zona de unión de heparina para obtener una respuesta celular equivalente a la obtenida con la molécula de fibronectina en cuanto a adhesión celular, proliferación y diferenciación. II THESIS OBJECTIVES The main objective of this thesis is on one hand, study the ternary system TiNbHf as a potential substitute for the alloys used in total hip replacement and on the other hand, synthesise a fibronectin recombinant fragments spanning the III and III domains 8-10 12-14 to improve osseointegration. The specific objectives of the present thesis are: 1. To design a titanium alloy based on optimization of molecular orbital calculations of electronic structures towards low modulus of elasticity and the potential for super elasticity and study the effect of niobium and hafnium alloying elements in terms of microstructure and elastic modulus. 2. To select the appropriate TINbHf composition, fabricate a bar and characterise its microstructure, determine its elastic modulus, determine its corrosion resistance and study its superficial energy. 3. To fabricate, by recombinant protein techniques, the fibronectin fragments FNIII 8-10 (CAS) and FNIII (HBII) and characterise the fuctionalisation of the TiNBHf alloy 12-14 with such fragments. 4. To study cell response to the biofunctionalised material in terms of adhesion force and cell adhesion, proliferation and differentiation. III CONFERENCE CONTRIBUTIONS C. Herranz, J. Schaffer, T. Trifonov, J. Portillo, S. Estrade, Ll. Yedra, J. Mendoza, FX Gil, J.M. Manero. “Microstructural characterization of a potential superelastic Nickel- free titanium alloy”. III Microscopy at the Frontiers of Science Conference, September 2013, Tarragona, Spain (Poster Presentation). C. Herranz, J. Schaffer, J.M. Manero. “Potential Superelastic nickel-free titanium alloy”. 2013 Shape Memory and Superelastic Technology Conference, May 2013, Prague, Czech Republic (Poster Presentation) C. Herranz, M. González, J. Guillem-Martí, J. Peña,J.C Rodríguez-Cabello, F.J. Gil, J.M. Manero. “New nickel-free titanium alloys design and functionalization for implantology”. XXXIII Iberian Society de Biomechanics and Biomaterials Conference, November 2010, Valencia, Spain (Oral Presentation). IV ABSTRACT .................................................................................................................................... I RESUMEN ..................................................................................................................................... II THESIS OBJECTIVES ................................................................................................................. III CONFERENCE CONTRIBUTIONS .............................................................................................. IV I Introduction .......................................................................................................................... 1 Chapter 1 Introduction ................................................................................................................ 3 1. Bone ....................................................................................................................... 5 1.1 Bone composition ................................................................................................ 5 1.2 Bone mechanics................................................................................................... 7 1.2.1 Creep and stress relaxation ........................................................................... 7 1.2.3 Viscoelasticity .............................................................................................. 8 1.3 Bone cytology ..................................................................................................... 8 1.3.1 Mesenchymal Stem Cells (MSC) ................................................................. 8 1.3.2 Osteoblasts .................................................................................................... 9 1.3.3 Osteoclasts .................................................................................................. 10 1.3.4 Osteocytes ................................................................................................... 10 1.4 Bone remodelling process ................................................................................. 11 1.4.1 Cell processes during bone remodelling ..................................................... 11 1.4.2 Bone functional adaptation ......................................................................... 13 1.5 Bone diseases .................................................................................................... 14 2. Materials used for bone replacement ................................................................... 16 2.1 Biomaterials ...................................................................................................... 16 2.1.1 Definition .................................................................................................... 16 2.1.3 Use of biomaterials ..................................................................................... 16 2.2 Metals used as biomaterials for prosthesis ........................................................ 18 2.2.1 Introduction ................................................................................................ 18 2.2.2 Stainless Steels. .......................................................................................... 18 V 2.2.3. Co- Based Alloys ....................................................................................... 20 2.2.4 Ti and Ti-Based Alloys .............................................................................. 21 2.2.5 Other metals ................................................................................................ 22 2.3 Titanium as a biomaterial .................................................................................. 23 2.3.1 History ........................................................................................................ 23 2.3.2 What makes titanium biocompatible? ........................................................ 23 2.4 Titanium alloys .................................................................................................. 23 2.4.1 Ti-6A-l4V ................................................................................................... 24 2.4.2 TMZFTM Alloy ........................................................................................... 25 2.4.3 Ti-13Zr-13Nb ............................................................................................. 25 2.4.4. Tyadine 1610 ............................................................................................. 25 2.4.5 Ti-24Nb-4Zr-7.9Sn ..................................................................................... 25 3. Problems derived from the interaction prosthesis-body ......................................... 26 3.1 Host response .................................................................................................... 26 3.1.1 Wound healing process ............................................................................... 26 3.1.2 Foreign body reaction ................................................................................. 27 3.2 Toxicity and Allergy ......................................................................................... 29 3.2.2 Toxicity ....................................................................................................... 29 3.2.1 Allergy ........................................................................................................ 30 3.3 Stress shielding effect........................................................................................ 31 3.4 Poor osseointegration ........................................................................................ 33 4. Mimicking extracellular matrix .............................................................................. 34 4.1 Extracellular matrix ........................................................................................... 34 4.1.1 Functions .................................................................................................... 34 4.1.2 Composition ............................................................................................... 35 4.1.4 Adhesion process ........................................................................................ 39 4.2 Biofunctionalisation of surfaces ........................................................................ 41 VI

Description:
Cellular Response. Carolina Herranz Díez. PhD Thesis. Doctoral program of Biomedical Engineering. Supervised by. Dr. JM. Manero Planella. Dr. Jordi Guillem Martí. Department of Materials Science and Metallurgical Engineering. Universitat Politècnica de Catalunya · Barcelona Tech (UPC).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.