ebook img

Functional Materials in Amperometric Sensing: Polymeric, Inorganic, and Nanocomposite Materials for Modified Electrodes PDF

228 Pages·2014·6.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Materials in Amperometric Sensing: Polymeric, Inorganic, and Nanocomposite Materials for Modified Electrodes

Monographs in Electrochemistry Series Editor: F. Scholz Renato Seeber Fabio Terzi Chiara Zanardi Functional Materials in Amperometric Sensing Polymeric, Inorganic, and Nanocomposite Materials for Modified Electrodes Functional Materials in Amperometric Sensing Monographs in Electrochemistry SeriesEditor:FritzScholz,UniversityofGreifswald,Germany Surprisingly,alargenumberofimportanttopicsinelectrochemistryisnotcovered by up-to-date monographs and series on the market, some topics are even not coveredatall.TheseriesMonographsinElectrochemistryfillsthisgapbypublish- ingindepthmonographswrittenbyexperiencedanddistinguishedelectrochemists, covering both theory and applications. The focus is set on existing as well as emergingmethodsforresearchers,engineers,andpractitionersactiveinthemany and often interdisciplinary fields, where electrochemistry plays a key role. These fields will range – among others – from analytical and environmental sciences to sensors,materialssciencesandbiochemicalresearch. Moreinformationaboutthisseriesat http://www.springer.com/series/7386 Renato Seeber • Fabio Terzi • Chiara Zanardi Functional Materials in Amperometric Sensing Polymeric, Inorganic, and Nanocomposite Materials for Modified Electrodes RenatoSeeber FabioTerzi ChiaraZanardi DepartmentofChemicalandGeologicalSciences UniversityofModenaandReggioEmilia Modena,Italy ISSN1865-1836 ISSN1865-1844(electronic) ISBN978-3-662-45102-1 ISBN978-3-662-45103-8(eBook) DOI10.1007/978-3-662-45103-8 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014957538 ©Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface of the Editor In modern interfacial electrochemistry, one can find two opposite directions of research: one focused on the most well-defined and clean interfaces (e.g., single crystal metal surfaces), and another in which attempts are made to construct the most complicated architectures at the interfaces. In some cases, these are also highly defined (e.g., in cases of self-assembled monolayers), but in other cases they may lack a high order, or we do not yet know the order, but these interfaces WORK as desired for certain applications. The immense variety of modified electrode surfaces is difficult to survey, and anybody entering into research and development of electrochemical sensors will greatly appreciate the competent advice available from a monograph such as this, written by highly experienced scientists. Renato Seeber, the senior author, and his colleagues Fabio Terzi and Chiara Zanardi from the University of Modena and Reggio Emilia, Italy, have focussed their book on amperometric sensors. Although amperometric sensing of the endpoint of a titration was first described in 1897 in a PhD thesis by Ernst Salomon[1–3],astudentofWaltherNernstinGo¨ttingen,progresswasratherslow inthefirsthalfofthetwentiethcentury,andamperometricsensorsremainedmainly confinedtoindicatingtitrationendpoints.Amperometrictitrationswereintensively developed by Songina et al. [4] in the former USSR; unfortunately, this detailed Russian work [5] has never been translated to English. Clark filed a patent for his famous oxygen sensorin1959 andpublishedit in1962[6, 7].Thesecond half of the last century saw a burst of innovations, especially in the area of biochemical sensors, most prominently the glucose sensor [8]. Now, electro- chemists (and chemists using electrochemical measuring techniques) have no hesitation in putting whatever they believe could be useful on electrode surfaces to achieve their goals. This experimental entrepreneurship is a challenge for many scientists who try to understand how these systems work. The present monograph is an important step towards a systematic view of complex sensors v vi PrefaceoftheEditor for amperometric measurements. The authors have avoided aspiring to complete literature coverage, but instead present a selection of instructive examples in the frameworkofasystematicclassification. Greifswald,Germany FritzScholz August2014 References 1. Scholz F (2012) Salomon, Ernst. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary,2ndedn.Springer,Berlin,p817 2.SalomonE(1897)TheoriedesReststromes,denmanbeipolarisiertenElektrodenbeobachtet. PhDthesis,Engelman,Leipzig 3.SalomonE(1897)ZPhysChem24:55. 4.ScholzF(2013)JSolidStateElectrochem17:1493 5.SonginaOA(1957)Amperometricheskoye(polyarometricheskoye)titrovanievmineral’nogo syr’ya, 3rd edn. Gosgeoltekhizdat, Moskva. Songina OA, Zakharov VA (1969) Amperome- tricheskoyetitrovanie.Khimiya,Moskva 6.ClarkLC(1959)USPatent2,913,386 7.ClarlLC,LyonsC(1962)AnnNYAcadSci102:29. 8.WollenbergerU(2012)Glucosesensor.In:BardAJ,InzeltG,ScholzF(eds)Electrochemical dictionary,2ndedn.Springer,Berlin,p423 Contents 1 ImportanceofModifiedElectrodesinAmperometricSensing. . . . . . 1 1.1 FromaLookattheHistoricalBackgroundtoConsiderationsfor EffectivePerspectives. . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . 3 1.2 AdvantagesSoughtwithRespecttoBareElectrodes. . . . . . . . . . 8 1.3 GeneralOverviewoftheModifyingMaterials. . . . . . . . . . . . . . . 14 1.4 AmperometricSensingforSpecificandAspecificAnalyses. . . . . 19 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 IntrinsicallyConductingPolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1 SynthesisandDepositionofICPsontoElectrodeSurfaces. . . . . . 25 2.2 PolymerDopingandDe-Doping. . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 PrincipalICPsDerivativesUsedinElectroanalysis. . . . . . . . . . . 32 2.3.1 Polypyrrole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.2 Polyaniline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 Polythiophene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.4 Polyphenazines,Polyphenothiazines,and Polyphenoxazines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 ApplicationsofICPsinElectroanalysis. . . . . . . . . . . . . . . . . . . . 35 2.4.1 DirectDetectionofOrganicSpecies. . . . . . . . . . . . . . . . 35 2.4.2 MolecularlyImprintedPolymers. . . . . . . . . . . . . . . . . . 40 2.4.3 DetectionofMetalIons. . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4.4 ElectronicTongues. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.4.5 EnzymaticBiosensors. . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4.6 Genosensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 RedoxPolymersandMetallopolymers. . . . . . . . . . . . . . . . . . . . . . . . 59 3.1 MainCharacteristicsofRedoxPolymers. . . . . . . . . . . . . . . . . . . 59 3.2 PreparationofElectrodeModifiedbyRPs. . . . . . . . . . . . . . . . . . 62 3.3 WhyModificationswithRPs?. . . . . . . . . . . . . . . . . . . . . . . . . . . 63 vii viii Contents 3.4 RPsinApplicationsorSuitableforApplications: MuchtoDoinElectroanalysis. . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5 DifferentSpeciesforDifferentRoles:RP-BasedComposites. . . . 66 3.6 PrussianBlueandAnalogousTransitionMetal Hexacyanoferrates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.7 FromPureRedoxtoRedox-ElectronicConductioninthe SameMolecule:TheMetallopolymers. . . . . . . . . . . . . . . . . . . . . 71 3.8 RepresentativeMetallopolymers. . . . . . . . . . . . . . . . . . . . . . . . . 80 3.8.1 Metallocenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.8.2 BipyridineandTerpyridineLigands. . . . . . . . . . . . . . . . 84 3.8.3 PhenanthrolineLigand. . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.8.4 SchiffBaseLigands. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.8.5 PorphyrinRings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.8.6 PhthalocyanineRing. . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.8.7 CyclamCycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.8.8 Sulphur-BasedLigands. . . . . . . . . . . . . . . . . . . . . . . . . 93 3.8.9 PhosphineLigands. .. . . . . . . .. . . . . . . .. . . . . . . .. . . 93 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 IonExchangePolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.1 PolymersforIonExchangeVoltammetry. . . . . . . . . . . . . . . . . . 99 4.2 PolymersforInclusionofRedoxMediators. . . . . . . . . . . . . . . . . 101 4.3 PolymersforGasSensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4 OtherApplicationsofIon-ExchangePolymers. . . . . . . . . . . . . . . 103 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5 Monolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.1 AnchoringMonolayerstoSubstrate. . . . . . . . . . . . . . . . . . . . . . . 106 5.2 CommonSubstratesforPreparationofMonolayers. . . . . . . . . . . 110 5.2.1 SubstratePreparation. . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2.2 ArrangementoftheHeadGroupsontheSubstrate Surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2.3 AdsorptionSitesfortheHeadGroups. . . . . . . . . . . . . . . 113 5.3 Spacers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.4 StabilityoftheMonolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5 ReactivityoftheMonolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.6 MixedMonolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.7 MonolayersBasedonOligomersandPolymers. . . . . . . . . . . . . . 121 5.8 ElectrochemistryofMonolayers. . . . . . . . . . . . . . . . . . . . . . . . . 123 5.9 AnalyticalApplications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6 NanosizedMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.1 ClassificationofNanosizedMaterials. . . . . . . . . . . . . . . . . . . . . 140 6.2 SynthesisTechniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3 StabilityinSolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Contents ix 6.4 SynthesisofNanostructureswithinTemplates. . . . . . . . . . . . . . . 147 6.5 SynthesisofPolymericNanostructures. . . . . . . . . . . . . . . . . . . . 151 6.6 SynthesisofMetalNano-ObjectsthroughChemicalReduction ofMetalSalts. . .. . . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . 154 6.6.1 Brust’sMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.6.2 Turkevich’sMethod. . . .. . . . . . .. . . . . . . .. . . . . . .. . 156 6.7 ReactivityoftheEncapsulatingAgent. . . . . . . . . . . . . . . . . . . . . 157 6.8 MulticomponentMaterials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.9 GraftingNanosizedMaterialsontoaSubstrate. . . . . . . . . . . . . . . 160 6.9.1 GraftingofPre-formedNano-Objectsthrough Monolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.9.2 GraftingPre-formedNano-ObjectsintheForm ofHybridMaterial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.9.3 SimultaneousSynthesisandDepositionof Nano-Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.10 ElectroanalyticalApplications. . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.10.1 NanosizedMaterialsinElectrocatalyticReactions. . . . . . 167 6.10.2 NanosizedMaterialsinStrippingVoltammetric Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.10.3 NanosizedMaterialsinBio-CatalyticSensors. . . . . . . . . 171 6.10.4 NanosizedMaterialsinAffinityBiosensors. . . . . . . . . . . 172 6.11 FinalRemarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7 Silica-BasedMaterialsandDerivatives. . . . . . . . . . . . . . . . . . . . . . . . 183 7.1 Clays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.1.1 GeneralAspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 7.1.2 ElectrochemicalBehaviorofClay-Modified Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 7.1.3 DepositionofClaysontheElectrodeSurfaces. . . . . . . . 191 7.1.4 ApplicationofClaysinElectroanalysis. . . . . . . . . . . . . . 192 7.2 Zeolites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.2.1 GeneralAspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.2.2 ElectrochemicalBehaviorofZeolite-Modified Electrodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 7.2.3 DepositionofZeoliteontoElectrodeSurface. . . . . . . . . 202 7.2.4 AnalyticalApplications. . . . . . . . . . . . . . . . . . . . . . . . . 203 7.3 AdditionalSilica-BasedMaterials. . . . . . . . . . . . . . . . . . . . . . . . 208 7.3.1 SilicaGel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7.3.2 Sol-Gel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 AbouttheAuthors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 AbouttheEditor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.