ebook img

Functional Magnetic Resonance Imaging Processing PDF

229 Pages·2014·5.653 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Magnetic Resonance Imaging Processing

Xingfeng Li Functional Magnetic Resonance Imaging Processing Functional Magnetic Resonance Imaging Processing Xingfeng Li Functional Magnetic Resonance Imaging Processing 123 XingfengLi IntelligentSystemsResearchCentre UniversityofUlster Londonderry UK ISBN978-94-007-7301-1 ISBN978-94-007-7302-8(eBook) DOI10.1007/978-94-007-7302-8 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2013949044 ©SpringerScience+BusinessMediaDordrecht2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To mymotherYufangZhang andmyfather YongkangLi Preface This book is about how to analyze perfusion-weightedimaging (PWI), functional MRI (fMRI), diffusion-weightedimaging(DWI),and structuralMRI (sMRI) data for investigating brain functions. Broadly speaking, there are two approaches to studybrainfunctionin vivo:oneisbolusinjectionmethodandtheotherisnonin- vasive(noinjections)method,e.g.,blood-oxygen-level-dependent(BOLD)contrast method.For the tracer injection method,we will introducedynamicsusceptibility contrastimaging(DSC-MRI),whichwefocusontheDiracdeltafunction(impulse function)asaninputforstudyingthebrainbloodflowsystem.Thebasicindicator theory is explained in details. Both linear and nonlinear regression methods are employed to smooth the DSC-MRI concentration time course. To solve the ill- posed problem for the residual function estimation, weighted damping method, i.e., Levenberg–Marquardt(LM) algorithm is introduced to solve Toeplitz matrix regularizationproblem.Cerebralbloodflowparametersarethenestimatedbasedon theindicatortheory. BOLD-fMRI processing is the main part of this book; this includes both acti- vation detection(segmentationview of the brain)and effectiveconnectivitystudy (integration view of the brain). We begin with the first-level activation detection analysis, and we introduced the generalized linear model with autoregression model for error correction in activation detection. The threshold correction for the activation map using false discoveryrate (FDR) and family-wise error (FWE) is introduced subsequently. Then mixed model is presented for the second-level analysis. To calculate the regression parameters, i.e., variance in the mixed effect model,Newton–Raphson(NR),LM,andtrustregionmethodsaregiveninChap.3. In recentyears,there hasbeenincreasinginterestin studyingeffectiveconnec- tivity using fMRI method. Generally speaking, there are three methods to study effective connectivityfrom the viewpoint of system identification, i.e., black-box, gray-box,and white-box methods. Since the black-boxmethod is model free and easy to apply, we concentrate on introducing this method. This includes model selectionforfirst-levelandrobustregressionforsecond-leveleffectiveconnectivity analysis.Wealsoapplythismethodforresting-statefMRIstudy. vii viii Preface The third part of this book is about processing diffusion-weighted imaging (DWI). The basic principle of MRI diffusion imaging is to study the motion of watermolecules.Thefirstconceptistheapparentdiffusioncoefficient(ADC)which quantifies the magnitude of the water diffusion on one dimension. Because water diffusion is really 3D processing, diffusion tensor imaging (DTI) is introduced to describethismotion.Basedonthisinformation,wecaninferthefiberdirectionsin thehumanbrain.ButDTImethodcannotresolvetheproblemofcrossingfiberissue; to circumvent this limitation, high angle resolution diffusion imaging (HARDI) was proposed, and Q-ball imaging (QBI) and diffusion spectrum imaging (DSI) havebeendevelopedforstudyingdiffusionorientationmap.Toestimateorientation distribution function (ODF) from QBI/DSI, regularization methods need to be adopted.Weintroducethecommonlyusedmethod,i.e.,generalizedcrossvalidation (GCV)methodforODFregularization. Finally, sMRI data analysis method is presented. Instead of concentrating on sMRI image segmentation and registration, we present voxel-based morphometry (VBM) method and its application to Alzheimer’s disease (AD) study. To begin with,wegivetheprocessingstepsforVBManalysisbasedoncross-sectionalstudy, andthenweprovidedlongitudinalVBMforsMRIdataanalysis.Furthermore,asan example,weapplythismethodtoADstudytodemonstratehowtousethismethod. Based on longitudinal VBM, we investigate the causality relationship between differentbrainregionsatdifferentstagesofdiseaseprogression. I assume the reader has a certain background in computer programming, numericalanalysis, statistics, and medical image analysis. This book can be used forgraduatestudentswhoareinterestedinstudyingmedicalimageanalysis,partic- ularlyfMRIimageanalysis.Itcanalsobeusedasareferencebookforradiologists, psychologists, neurologists, medical image physicists, computer scientists, and biomedicalengineersforstudyingMRIimageprocessing. I wish to thankProf. RobertHess and Prof.Kathy MullenfromMcGill Vision Research, McGill University, Canada, for providing a huge amount of fMRI data for this book. I appreciate Dr. Arun L. W. Bokde and Dr. Elizabeth Kehoe from Cognitive Systems group, Trinity College Dublin, Ireland, for collecting resting-statefMRI andemotionalfacialexperimentalfMRIdata.IrecognizeProf. Cyril Pouponfrom NeuroSpin, France, and Dr. Jennifer Campbell from Montreal Neurological Institute, McGill University, Canada, for providing the human and biologicalratQBIdatasets.IamobligatedtoProf.StefanTeipelandDr.Maximilian LerchefromtheUniversityofRostockinGermanytoallowmetousetheirDSIdata. Furthermore,IamespeciallygratefultoProf.HabibBenaliandDr.ArnaudMesse fromfunctionalimaginglaboratory,INSERM/UPMC,Paris6thUniversity,France, fortheirhelpindevelopingthemethodforprocessingQBI.Finally,Iacknowledge Prof. Thomas Martin McGinnity from University of Ulster, UK, for helping my work.Mostof all, I am indebtedto mywife, Feijun Wang, forherunderstanding, patience,andsupportforwritingthisbook. Londonderry,UK XingfengLi Contents 1 MRIPerfusion-WeightedImagingAnalysis .............................. 1 1.1 PerfusionImaging....................................................... 2 1.1.1 Indicator–DilutionTheoryforDSC-MRI ..................... 3 1.1.2 MTTandCBVCalculation .................................... 6 1.1.3 DSC-MRITimeSeriesAnalysis............................... 8 1.2 Gamma-VariateFitting.................................................. 11 1.2.1 LinearRegressionMethodforGamma-VariateFitting....... 11 1.2.2 NonlinearRegressionMethodforGamma-VariateFitting ... 13 1.2.3 BaselineEliminationforGamma-VariateFitting ............. 16 1.2.4 Linear Method and Nonlinear Method forGamma-VariateFitting ..................................... 18 1.3 AIFSelection............................................................ 19 1.3.1 RobustMethodforAIFDetermination........................ 20 1.3.2 DeconvolutionCalculationandResidualFunction Estimation....................................................... 22 1.3.3 SVDMethodforDeconvolution............................... 24 1.3.4 L2NormRegularizationforPWIStudy....................... 25 1.3.5 PiecewiseLinearMethodforRidgeRegression ParameterEstimation........................................... 26 1.3.6 CBF,MTT,CBV,ArrivalTime,andT-maxMaps ............ 29 1.4 DispersionEffectsinDSC-MRI........................................ 32 1.4.1 LocalDensityRandomWalkforConcentrationTimeCourse 32 1.4.2 ConvolutionMethodtoStudyDisperseEffect................ 33 1.5 SummaryofthePWIAlgorithm ....................................... 33 References..................................................................... 35 2 First-LevelfMRIDataAnalysisforActivationDetection............... 39 2.1 fMRIExperimentalDesign............................................. 40 2.1.1 BlockDesign.................................................... 41 2.1.2 RandomERDesign............................................. 42 2.1.3 Phase-EncodedDesign ......................................... 44 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.