feldman_titelei 31.3.2008 17:10 Uhr Seite 1 EMS Tracts in Mathematics 5 feldman_titelei 31.3.2008 17:10 Uhr Seite 2 EMS Tracts in Mathematics Editorial Board: Carlos E. Kenig (The University of Chicago, USA) Andrew Ranicki (The University of Edinburgh, Great Britain) Michael Röckner (Universität Bielefeld, Germany, and Purdue University, USA) Vladimir Turaev (Department of Mathematics, Indiana University, Bloomington, USA) Alexander Varchenko (The University of North Carolina at Chapel Hill, USA) This series includes advanced texts and monographs covering all fields in pure and applied mathematics. Tractswill give a reliable introduction and reference to special fields of current research. The books in the series will in most cases be authored monographs, although edited volumes may be published if appropriate. They are addressed to graduate students seeking access to research topics as well as to the experts in the field working at the frontier of research. 1 Panagiota Daskalopoulos and Carlos E. Kenig, Degenerate Diffusions 2 Karl H. Hofmann and Sidney A. Morris, The Lie Theory of Connected Pro-Lie Groups 3 Ralf Meyer, Local and Analytic Cyclic Homology 4 Gohar Harutyunyan and B.-Wolfgang Schulze, Elliptic Mixed, Transmission and Singular Crack Problems feldman_titelei 31.3.2008 17:10 Uhr Seite 3 Gennadiy Feldman Functional Equations and Characterization Problems on Locally Compact Abelian Groups S E M M E S SS EE E M S MM MM uropean athematical ociety EE SS feldman_titelei 31.3.2008 17:10 Uhr Seite 4 Author: Gennadiy Feldman Mathematical Division B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine 47 Lenin Ave. Kharkov, 61103, Ukraine E-mail: [email protected] 2000 Mathematics Subject Classification: 60-02, 60B15, 62E10; 43A05, 43A25, 43A35, 39B52 Key words: Locally compact Abelian group, Gaussian distribution, characterization problems of mathematical statistics, functional equation ISBN 978-3-03719-045-6 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadca- sting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2008 European Mathematical Society Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: I. Zimmermann, Freiburg Printed in Germany 9 8 7 6 5 4 3 2 1 Preface Characterization problems in mathematical statistics are statements in which the de- scriptionofpossibledistributionsofrandomvariablesfollowsfrompropertiesofsome functionsinthesevariables. Oneofthefamousexamplesofacharacterizationprob- lem is the classical Kac–Bernstein theorem ([65], [13]). This theorem characterizes a Gaussian distribution by the independence of the sum (cid:2) C (cid:2) and of the differ- 1 2 ence (cid:2) (cid:2)(cid:2) of independent random variables (cid:2) . Taking into account that the char- 1 2 j acteristic function of the random variable (cid:2) with distribution (cid:3) is the expectation j j f .y/ D (cid:3)O .y/ D EŒei(cid:2)jy(cid:4), it is easily verified that the Kac–Bernstein theorem is j j equivalenttothestatementthat,intheclassofnormalizedcontinuouspositivedefinite functions,allsolutionstotheKac–Bernsteinfunctionalequation f .uCv/f .u(cid:2)v/Df .u/f .v/f .u/f .(cid:2)v/; u;v 2R; 1 2 1 1 2 2 areoftheformf .y/Dexpf(cid:2)(cid:5)y2Cib yg,where(cid:5) (cid:3)0,andb 2R. j j j TheKac–Bernsteintheoremwasthefirstamongcharacterizationtheoremswhere independent linear forms of independent random variables (cid:2) under different restric- j tionson(cid:2) werestudied. ThesestudieswerecompletedwiththefollowingSkitovich– j Darmois theorem ([98], [23]): Let (cid:2) , j D 1;2;:::;n, n (cid:3) 2, be independent j random variables, and ˛ , ˇ be nonzero real numbers. If the linear forms L D j j 1 ˛ (cid:2) C(cid:4)(cid:4)(cid:4)C˛ (cid:2) and L D ˇ (cid:2) C(cid:4)(cid:4)(cid:4)Cˇ (cid:2) are independent, then all random 1 1 n n 2 1 1 n n variables (cid:2) are Gaussian. Just as in the case of the Kac–Bernstein theorem, the j Skitovich–Darmois theorem is equivalent to the statement that, in the class of nor- malizedcontinuouspositivedefinitefunctions,allsolutionstotheSkitovich–Darmois functionalequation Yn Yn Yn f .˛ uCˇ v/D f .˛ u/ f .ˇ v/; u;v 2R; j j j j j j j jD1 jD1 jD1 areoftheform f .y/Dexpf(cid:2)(cid:5) y2Cib yg; .1/ j j j where(cid:5) (cid:3)0andb 2R. j j TheSkitovich–DarmoistheoremwasgeneralizedbyGhuryeandOlkin([54])tothe multivariablecasewhen,insteadofrandomvariables,randomvectors(cid:2) inthespace j Rm are considered, and coefficients of the linear forms L and L are nonsingular 1 2 matrices. InthiscasetheindependenceofL andL alsoimpliesthatallindependent 1 2 randomvectors(cid:2) areGaussian. TheproofoftheGhurye–Olkintheoremisalsoreduced j tosolvingthecorrespondingfunctionalequation. Itshouldbenotedthatnonsingular matricesaretopologicalautomorphismsofthegroupRm. Next Heyde proved the following result ([61]): Let (cid:2) , j D 1;2;:::;n, n(cid:3)2, j be independent random variables, and let ˛ , ˇ be nonzero real numbers such that j j vi Preface ˇ ˛(cid:2)1 ˙ˇ ˛(cid:2)1 ¤ 0 for all i ¤ j. If the conditional distribution of L D ˇ (cid:2) C i i j j 2 1 1 (cid:4)(cid:4)(cid:4)Cˇ (cid:2) givenL D˛ (cid:2) C(cid:4)(cid:4)(cid:4)C˛ (cid:2) issymmetric,thenall(cid:2) areGaussian. This n n 1 1 1 n n j statement is closely related to the Skitovich–Darmois theorem. The Heyde theorem isalsoequivalenttotheassertionthat, intheclassofnormalizedcontinuouspositive definitefunctions,allsolutionstotheHeydefunctionalequation Yn Yn f .˛ uCˇ v/D f .˛ u(cid:2)ˇ v/; u;v 2R; j j j j j j jD1 jD1 areoftheform(1). Inthelast30yearsmuchattentionhasbeendevotedtogeneralizingoftheclassical characterization theorems into various algebraic structures such as locally compact Abelian groups, Lie groups, quantum groups, symmetric spaces (see e.g., [2], [29], [31]–[44], [46], [47], [49], [52], [55], [56], [64], [78]–[82], [84]–[87], [91], [93], [94]). These investigations were motivated, first of all, by the desire to find the natural limits for possible extensions of the classical results. The present book is devoted togeneralizationoftheKac–Bernstein, Skitovich–Darmois, andHeydecharacteriza- tiontheoremstothecasewhereindependentrandomvariablestakevaluesinasecond countablelocallycompactAbeliangroupX,andcoefficientsoflinearformsaretopo- logicalautomorphismsofX. Itturnsoutthatthepossibilitytoproveacharacterization theoremforX notonlydependsonthestructureofX butalsodeterminesitsstructure. For example, assume that independent random variables (cid:2) and (cid:2) take values in X 1 2 andtheircharacteristicfunctionsdonotvanish,thentheindependenceof(cid:2) C(cid:2) and 1 2 (cid:2) (cid:2)(cid:2) impliesthat(cid:2) areGaussianifandonlyifX containsnosubgrouptopologi- 1 2 j cally isomorphic to the circle group T. Note that in the case of groups as well as in the classical case, the proof of this theorem can be reduced to solving of some func- tionalequationintheclassofnormalizedcontinuouspositivedefinitefunctionsonthe charactergroupofX. Wedescribeandcommentonthemaincontentsofthebook. ChapterIcontainsmainlywell-knownfactsfromabstractharmonicanalysisandthe theoryofinfiniteAbeliangroups. InSection1wegivethebasicdefinitionsandconsider some examples of locally compact Abelian groups. In particular, we describe all subgroupsoftheadditivegroupoftherationalnumbersQ,thegroupsofp-adicintegers (cid:6)p,anda-adicsolenoids†a. Weformulatestructuretheoremsforvariousclassesof locallycompactAbeliangroupsanddescribethetopologicalautomorphismgroupsof thegroupsRn,Tn,(cid:6)p,†a. ThebasicresultsofUlmtheoryforcountablep-primary Abeliangroupsarealsopresented. InSection2wediscusssomeaspectsofprobability distributions on locally compactAbelian groups (the Bochner theorem, properties of characteristicfunctions,theLévy–Khinchinformula,idempotentdistributions). ChapterIIisdevotedtoGaussiandistributionsonalocallycompactAbeliangroupX. InSection3wedefineGaussiandistributionsandstudytheirproperties. InSection4 we describe locally compact Abelian groups where every Gaussian distribution has onlyGaussianfactors(thegroupanalogueoftheCramértheoremofdecompositionof Preface vii aGaussiandistribution). InSection5westudypropertiesofcontinuouspolynomials onlocallycompactAbeliangroups. WedescribelocallycompactAbeliangroupswhere anydistribution(cid:3)withacharacteristicfunctionoftheform(cid:3)O.y/DeP.y/,whereP.y/ isacontinuouspolynomial,isGaussian(thegroupanalogueoftheMarcinkiewicztheo- rem). ThegroupanaloguesoftheCramérandMarcinkiewicztheoremsarebasictools for proving characterization theorems in Chapters III–VI. In Section 6 we consider GaussiandistributionsinthesenseofUrbanik,i.e.,suchdistributionsonX whichany character transforms into Gaussian distributions on the circle group T. We describe locallycompactAbeliangroupsforwhichtheclassofGaussiandistributionscoincides withtheclassofGaussiandistributionsinthesenseofUrbanik. In Chapter III we study distributions of independent random variables (cid:2) and (cid:2) 1 2 taking values in a locally compact Abelian group X such that (cid:2) C(cid:2) and (cid:2) (cid:2)(cid:2) 1 2 1 2 are independent. In Section 7 we describe all groups X where such distributions are invariant with respect to a compact subgroup K of X and that, under the natural homomorphismX 7! X=K,induceGaussiandistributionsonthefactorgroupX=K. This is the widest subclass of locally compact Abelian groups on which the Kac– Bernsteintypetheoremcanbeproved. ItconsistsofallgroupsX havingtheconnected componentofzerowithoutelementsoforder2. If the connected component of zero of a group X contains elements of order 2, then for such groups the following natural problem arises: to describe all possible distributionsofindependentrandomvariables(cid:2) takingvaluesinX andsuchthatthe j sum(cid:2) C(cid:2) andthedifference(cid:2) (cid:2)(cid:2) areindependent. Wepresentasolutiontothis 1 2 1 2 probleminSection8forthegroupR(cid:5)T andthea-adicsolenoids†a. InSection9 westudydistributionsofindependentidenticallydistributedrandomvariables(cid:2) and 1 (cid:2) takingvaluesinalocallycompactAbeliangroupX suchthat(cid:2) C(cid:2) and(cid:2) (cid:2)(cid:2) 2 1 2 1 2 areindependent(GaussiandistributionsinthesenseofBernstein). ChaptersIVandVaredevotedtosomegroupanaloguesoftheSkitovich–Darmois theorem. Let (cid:2) , j D 1;2;:::;n, n (cid:3) 2, be independent random variables taking j valuesinalocallycompactAbeliangroupX,and˛ ,ˇ betopologicalautomorphisms j j ofX. PutL D˛ (cid:2) C(cid:4)(cid:4)(cid:4)C˛ (cid:2) andL Dˇ (cid:2) C(cid:4)(cid:4)(cid:4)Cˇ (cid:2) . 1 1 1 n n 2 1 1 n n InChapterIVweassumethatthecharacteristicfunctionsofindependentrandom variables (cid:2) do not vanish. We prove in Section 10 that independence of the linear j formsL andL impliesthatall(cid:2) areGaussianifandonlyifX containsnosubgroup 1 2 j topologicallyisomorphictothecirclegroupT. Undertheconditionthatthecharac- teristic functions of (cid:2) do not vanish, this is the widest subclass of locally compact j AbeliangroupsonwhichtheSkitovich–Darmoistheoremcanbeextended. AssumethatagroupX containsasubgrouptopologicallyisomorphictothecircle groupT. Thenthefollowingnaturalproblemarises: todescribeallpossibledistribu- tionsofindependentrandomvariables(cid:2) takingvaluesinX andhavingtheproperty j that the linear forms L and L are independent. The remainder of Chapter IV is 1 2 devotedtosolutionofthisproblem. Itturnsoutthatifthecharacteristicfunctionsof independent random variables (cid:2) with distributions (cid:3) do not vanish and L and L j j 1 2 are independent, then the distributions (cid:3) can be replaced by their shifts (cid:3)0 in such j j viii Preface a way that all (cid:3)0 are supported in the connected component of zero of the group X. j Hence the problem can be reduced to the case when X is connected. An important characteristicofaconnectedlocallycompactAbeliangroupX isitsdimensiondimX. IfdimX D1,thenX istopologicallyisomorphictooneofthefollowinggroups: the real line R, an a-adic solenoid †a or the circle group T. If dimX D 2, then either X containsnosubgrouptopologicallyisomorphictothecirclegroupT orX istopo- logicallyisomorphictooneofthefollowinggroups: T2,R(cid:5)T or†a(cid:5)T. Assume thatthenumberofrandomvariables(cid:2) isequalto2. InSection11wedescribeforthe j two-dimensionaltorusT2 allpossibledistributionsoftherandomvariables(cid:2) inthe j casewhenlinearformsL andL areindependent. Generallyspeaking,thesedistri- 1 2 butionsarenotGaussian,andwedescribe,inparticular,alltopologicalautomorphisms ˛ ,ˇ ofthetwo-dimensionaltorusT2 forwhichthecorrespondingdistributionsare j j Gaussian. InSection12wesolvethesameproblemforthegroupsR(cid:5)T and†a(cid:5)T. InChapterVweomittheassumptionthatthecharacteristicfunctionsofindependent randomvariables(cid:2) donotvanishandsupposethat(cid:2) takevaluesindifferentclasses j j of locally compactAbelian groups (finite, discrete, discrete torsion, compact totally disconnected, etc.) Since Gaussian distributions on a totally disconnected group are degenerate, idempotent distributions play an important role on such groups. It turns out that, in contrast to the classical situation, there are essential distinctions between the cases when we deal with linear forms of two random variables, of three random variables,orofn(cid:3)4randomvariables. Inthegroupsituationsomeneweffectsappear whichdonotholdontherealline. Toshowthisconsiderthefollowingexample. Let Z.5/bethegroupofresiduesmodulo5,and(cid:2) ,j D1;2;:::;n,n(cid:3)2,beindependent j random variables with values in Z.5/. If n D 2 and the linear forms L and L are 1 2 independent,thenallrandomvariables(cid:2) haveidempotentdistributions. IfnD3and j thelinearformsL andL areindependent,thenwecanonlyassertthatatleastone 1 2 oftherandomvariables(cid:2) hasanidempotentdistribution. Ontheotherhandforevery j n (cid:3) 4 there exist independent random variables (cid:2) , j D 1;2;:::;n, taking values j inZ.5/andautomorphisms˛ ,ˇ ofZ.5/suchthatthelinearformsL andL are j j 1 2 independent,butall(cid:2) havenon-idempotentdistributions. j InSection13weconsidertwoindependentrandomvariables(cid:2) and(cid:2) . Weprove 1 2 thatifXisadiscretegroupandthelinearformsL andL areindependent,then(cid:2) and 1 2 1 (cid:2) haveidempotentdistributions. Wealsodescribecompacttotallydisconnectedgroups 2 forwhichthispropertyholdstrue. WeprovethattheSkitovich–Darmoistheoremfails for compact connected groups. In Section 14 we study the case when the number n ofrandomvariables(cid:2) ,j D1;2;:::;n,isgreaterthan2. Firstweassumethatthe(cid:2) j j takevaluesinafinitegroup. ThenwestudythecasewhenX iseitheracompacttotally disconnectedgrouporadiscretetorsiongroup. Wedescribeinbothcasesthegroups X forwhichindependenceofthelinearformsL andL impliesthateitherallrandom 1 2 variables(cid:2) haveidempotentdistributionsoratleasttwooftherandomvariables(cid:2) have j j idempotentdistributions,oratleastoneoftherandomvariables(cid:2) hasanidempotent j distribution. Furtherweconsideranarbitrarynumbern (cid:3) 4ofrandomvariables(cid:2) , j andX isassumedtobeeitheradiscretetorsiongrouporacompactgroup. Wenotethat our proof of the Skitovich–Darmois theorem for discreteAbelian groups in the case Preface ix when n D 2, in contrast to the proof of the Skitovich–Darmois theorem for discrete Abeliangroupsinthecasewhenn>2,doesnotusetheUlmtheory. In Section 15 we consider independent random variables (cid:2) and (cid:2) taking values 1 2 in an a-adic solenoid †a. We describe all possible distributions of random variables (cid:2) assumingthatthelinearformsL andL areindependent. Theresultdependson j 1 2 bothana-adicsolenoidandtopologicalautomorphisms˛ ;ˇ . j j In Chapter VI we study group analogues of the Heyde theorem. Let (cid:2) , j D j 1;2;:::;n, n (cid:3) 2, be independent random variables taking values in a locally com- pactAbeliangroupX. Let˛ , ˇ betopologicalautomorphismsofX satisfyingthe j j condition .i/ ˇ ˛(cid:2)1˙ˇ ˛(cid:2)1 aretopologicalautomorphismsofX foralli ¤j: i i j j Let L D ˛ (cid:2) C(cid:4)(cid:4)(cid:4)C˛ (cid:2) and L D ˇ (cid:2) C(cid:4)(cid:4)(cid:4)Cˇ (cid:2) . Assume first that the 1 1 1 n n 2 1 1 n n characteristic functions of the independent random variables (cid:2) do not vanish. In j Section 16 we prove that symmetry of the conditional distribution of the linear form L givenL impliesthatall(cid:2) areGaussianifandonlyifX containsnoelementsof 2 1 j order2. Thisresultcannotbeimproved. IfagroupX containselementsoforder2, then the following natural problem arises: to describe all possible distributions of independentrandomvariables(cid:2) takingvaluesinX andhavingthepropertythatthe j conditionaldistributionofthelinearformL givenL issymmetric. Weassumethat 2 1 onthegroupX thereexisttopologicalautomorphisms˛ ,ˇ satisfyingcondition(i). j j A simple example of such a group is the two-dimensional torus X D T2, and even in this case the problem is very interesting. It turns out that the distributions which are characterized by the symmetry of the conditional distribution of the linear form L givenL areconvolutionsofGaussiandistributionsconcentratedonadenseone- 2 1 parametersubgroupofT2anddistributionssupportedinthesubgroupofT2generated byelementsoforder2. InSection17wedroptheassumptionthatthecharacteristicfunctionsofindepen- dent random variables (cid:2) do not vanish. We first study the case when (cid:2) take values j j in a finite group and then (cid:2) take values in a discrete group X. In the case when X j isdiscreteandthenumberofrandomvariables(cid:2) is2,weproveinparticularthatthe j symmetry of the conditional distribution of the linear form L given L implies that 2 1 therandomvariables(cid:2) and(cid:2) haveidempotentdistributionsifandonlyifthegroup 1 2 X containsnoelementsoforder2. In the appendix we study the Kac–Bernstein and Skitovich–Darmois functional equationsonlocallycompactAbeliangroupsintheclassesofcontinuousandmeasur- ablefunctions. TheauthorwouldliketothanktheB.VerkinInstituteforLowTemperaturePhysics andEngineeringoftheNationalAcademyofSciencesofUkraineforprovidingexcel- lentfacilitiesforwritingthisbook. March2008 G.M.Feldman