ebook img

Functional and High-Dimensional Statistics and Related Fields PDF

270 Pages·2020·8.702 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional and High-Dimensional Statistics and Related Fields

Contributions to Statistics Germán Aneiros Ivana Horová Marie Hušková Philippe Vieu  Editors Functional and High-Dimensional Statistics and Related Fields Contributions to Statistics The series Contributions to Statistics contains publications in theoretical and applied statistics, including for example applications in medical statistics, biometrics, econometrics and computational statistics. These publications are primarily monographs and multiple author works containing new research results, but conference and congress reports are also considered. Apart from the contribution to scientific progress presented, it is a notable characteristicoftheseriesthatpublishingtimeisveryshort,permittingauthorsand editors to present their results without delay. More information about this series at http://www.springer.com/series/2912 Germán Aneiros • Ivana Horová Marie Hušková • Philippe Vieu Editors Functional and High-Dimensional Statistics and Related Fields 123 Editors Germán Aneiros Ivana Horová Department of Mathematics Department of Mathematics University of A Coruña and Statistics A Coruña, Spain Masaryk University B rno, Czech Republic Marie Hušková Department of Probability Philippe Vieu and Mathematical Statistics Toulouse Mathematics Institute Charles University Paul Sabatier University - Toulouse III Prague, Czech Republic Toulouse, France ISSN 1431-1968 Contributions to Statistics ISBN 978-3-030-47755-4 ISBN 978-3-030-47756-1 (eBook) https://doi.org/10.1007/978-3-030-47756-1 Mathematics Subject Classification (2020): 62-07, 62G05, 62G09, 62G20, 62F12, 62F15, 62F40, 62H25 © Springer Nature Switzerland AG 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Preface During the last twelve years, the International Workshop on Functional and Op- eratorial Statistics has become a prominent platform for exchange of ideas and communicationinthegrowingcommunityofresearchersinfunctionaldataanaly- sis.FollowingthesuccessofthepreviousmeetingsheldinToulouse(France,2008), Santander (Spain, 2011), Stresa (Italy, 2014) and A Coruña (Spain, 2017), the 5th IWFOStakesplaceatMasarykUniversityinBrno,CzechRepublic.Theworkshop was originally planned for June 2020 but due to the rapidly evolving coronavirus pandemicithasbeenpostponed.Nevertheless,thiscollectionofpeer-reviewedshort papersispublishedasplanned.Itreflectsthediversityoftheoretical,methodological andappliedadvancesinfunctionaldataanalysisanditsintersectionwithotherareas ofstatistics,suchashigh-dimensionaldataanalysisandnonparametricstatistics,as wellasthediversityofthecommunityitself. We would like to thank all the authors presenting their work at the workshop. We are particularly grateful to invited speakers Gérard Biau (Sorbonne Univer- sité,France),EduardoGarcíaPortugués(UniversidadCarlosIIIdeMadrid,Spain), Lajos Horváth (University of Utah, USA), Roberto Imbuzeiro (Instituto Nacional de Matemática Pura e Aplicada, Brazil), Dominik Liebl (Rheinische Friedrich- Wilhelms-Universität Bonn, Germany), Regina Y. Liu (Rutgers School of Arts and Sciences, USA), Stanislav Nagy (Charles University, Prague, Czech Repub- lic),PiercesareSecchi(PolitecnicodiMilano,Italy)andYoavZemel(Universityof Cambridge,UnitedKingdom). WeespeciallyappreciatetheeffortofthemembersoftheScientificCommittee, namely John Aston (Cambridge, UK), Ricardo Cao (A Coruña, Spain), Antonio Cuevas (Madrid, Spain), Aurore Delaigle (Melbourne, Australia), Manuel Febrero (Santiago de Compostela, Spain), Ricardo Fraiman (Montevideo, Uruguay), Aldo Goia (Novara, Italy), Daniel Hlubinka (Prague, Czech Republic), Siegfried Hör- mann (Graz, Austria), David Kraus (Brno, Czech Republic), Sara Lopez-Pintado (NewYork,USA),SteveMarron(ChapelHill,USA),AlexanderMeister(Rostock, Germany),VictorPanaretos(Lausanne,Switzerland),GregRice(Waterloo,Canada) v vi Preface and Simone Vantini (Milan, Italy), and other experts during the preparation of the scientificprogramandthereviewprocess. We are grateful to the following academic and private institutions and organi- zations for their support: Faculty of Science, Masaryk University, Brno, Faculty of Mathematics and Physics, Charles University, Prague, Union of Czech Math- ematicians and Physicists, Brno branch, Institut de Mathématiques de Toulouse, Autocont,PrefaBrno,Kiwi.com,TrilobyteStatisticalSoftware,SC&CPartnerand HomeCredit. ThepreparationofIWFOSispossiblethankstothemembersoftheOrganizing Committee,inparticular,EneaBongiorno,MarieBudíková,JitkaForejtováZhořová, Jan Koláček, Zdeněk Pospíšil, Lenka Přibylová, Petr Vitík and Jan Vondra. The preparation of the proceedings went smoothly thanks to the dedicated work of OndřejPokora,JiříZelinkaandDavidKrausfromtheOrganizingCommittee,and VeronikaRosteckandGerlindeSchusterofSpringer. Brno,March2020 GermánAneiros IvanaHorová MarieHušková PhilippeVieu Contents Preface ....................................................... v ListofContributors ............................................ xv 1 Anintroductiontothe(postponed)5theditionoftheInternational WorkshoponFunctionalandOperatorialStatistics .............. 1 GermánAneiros,IvanaHorová,MarieHuškováandPhilippeVieu 1.1 IWFOSandFunctionalDataAnalysis ........................ 1 1.2 Presentationofthevariouschapters .......................... 2 References ..................................................... 4 2 Analysis of Telecom Italia Mobile Phone Data by Space-time RegressionwithDifferentialRegularization ..................... 5 EleonoraArnone,MaraS.Bernardi,LauraM.SangalliandPiercesare Secchi 2.1 Space-TimeRegressionwithDifferentialRegularization......... 5 2.2 TelecomItaliaMobilePhoneData ........................... 6 2.3 ST-PDEModelandEstimatingtheNon-stationaryAnisotropy.... 8 References ..................................................... 9 3 SomeNumericalTestontheConvergenceRatesofRegressionwith DifferentialRegularization ................................... 11 EleonoraArnone,AloisKneip,FabioNobileandLauraM.Sangalli 3.1 Introduction.............................................. 11 3.2 SpatialRegressionwithPDEPenalization..................... 12 3.3 NumericalStudyofAsymptoticProperties .................... 14 3.4 FutureDirections ......................................... 16 References ..................................................... 17 vii viii Contents 4 LearningwithSignatures .................................... 19 GérardBiauandAdelineFermanian 4.1 Introduction.............................................. 19 4.2 SignatureDefinitionandFirstProperties...................... 21 4.3 Embeddings.............................................. 23 References ..................................................... 26 5 About the Complexity Function in Small-ball Probability Factorization .............................................. 27 EneaG.Bongiorno,AldoGoiaandPhilippeVieu 5.1 Introduction.............................................. 27 5.2 NonparametricEstimatorsoftheComplexityFactor ............ 28 5.3 ParametricEstimationoftheComplexityFactor................ 30 5.4 TestingtheComplexityofaProcess.......................... 31 References ..................................................... 32 6 Principal Components Analysis of a Cyclostationary Random Function .................................................. 35 AlainBoudouandSylvieViguier-Pla 6.1 Introduction.............................................. 35 6.2 PrerequisitesandNotation.................................. 36 6.3 PrincipalComponentsAnalysisintheFrequencyDomain ....... 37 6.4 RelationbetweentheSpaces𝐿2 (𝜉)and𝐿2 (A) ......... 38 𝐿2(A) 𝐿2(𝜉) 6.5 Cyclostationarity.......................................... 39 6.6 Definitionofa𝐿2(𝜉)−stationarySeriesfromaCyclostationaryr.f. 39 6.7 SimulationofaCyclostationaryr.f.andPCA.................. 40 References ..................................................... 42 7 LevelSetandDensityEstimationonManifolds .................. 43 AlejandroCholaquidis,RicardoFraimanandLeonardoMoreno 7.1 Introduction.............................................. 43 7.2 NotationandGeometricFramework.......................... 44 7.3 DensityEstimation ........................................ 45 7.4 LevelSetEstimation....................................... 46 7.5 ManifoldLevelSetEstimationunderr-convexity ............... 46 7.6 SimulationResults ........................................ 47 References ..................................................... 50 8 Pseudo-metricsasInterestingToolinNonparametricFunctional Regression ................................................ 53 LaurentDelsolandAldoGoia 8.1 Introduction.............................................. 53 8.2 Pseudo-metricsuseinNon-parametricRegressiononFunctional Variable ................................................. 54 8.3 OptimalPseudo-metricSelectioninPractice................... 56 8.4 SimulationStudies ........................................ 57 Contents ix References ..................................................... 60 9 TestingaSpecificationForminSingleFunctionalIndexModel ..... 61 LaurentDelsolandAldoGoia 9.1 Introduction.............................................. 61 9.2 NotationandBasicPrinciple................................ 62 9.3 TheTestStatistic.......................................... 63 9.4 FiniteDimensionalPerformancesoftheTest .................. 64 9.5 Concludings.............................................. 66 References ..................................................... 67 10 ANewMethodforOrderingFunctionalDataanditsApplicationto DiagnosticTest............................................. 69 GracielaEstévez-PérezandPhilippeVieu 10.1 Introduction.............................................. 69 10.2 SomeDiscussionaboutRanking:FromOnetoInfiniteDimensions 70 10.3 SomeDiscussionaboutROCCurvesandDiagnosticTest........ 70 10.4 AFlexibleFunctionalOrderingMethod ...................... 71 10.5 AFunctionalDiagnosticTest ............................... 73 References ..................................................... 74 11 AFunctionalDataAnalysisApproachtotheEstimationofDensities overComplexRegions....................................... 77 FedericoFerraccioli,LauraM.Sangalli,EleonoraArnoneandLivio Finos 11.1 Introduction.............................................. 77 11.2 Methodology............................................. 79 11.3 FutureResearch........................................... 80 References ..................................................... 81 12 A Conformal Approach for Distribution-free Prediction of FunctionalData............................................ 83 Matteo Fontana, Simone Vantini, Massimo Tavoni and Alexander Gammerman 12.1 Introduction.............................................. 84 12.2 ConformalPredictionforFunctionalVariables................. 84 12.3 FunctionalConformityMeasures ............................ 87 12.4 ApplicationtoIAMEnsembleForecasting .................... 87 References ..................................................... 88 13 G-LassoNetworkAnalysisforFunctionalData .................. 91 LaraFontanella,SaraFontanella,RosariaIgnaccolo,LuigiIppolitiand PasqualeValentini 13.1 Introduction.............................................. 91 13.2 GraphicalModelsforFunctionalData ........................ 92 13.3 NetworkAnalysisontheCanadianWeather ................... 94 13.4 Discussion ............................................... 97

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.