Yutaka Yamamoto Kyoto University Kyoto, Japan From Vector Spaces to Function Spaces Introduction to Functional Analysis with Applications Society for Industrial and Applied Mathematics Philadelphia OT127_Yamamoto_FM.indd 3 6/20/2012 3:03:51 PM Copyright © 2012 by the Society for Industrial and Applied Mathematics 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Library of Congress Cataloging-in-Publication Data Yamamoto, Yutaka, 1950- [Shisutemu to seigyo no sugaku. English] From vector spaces to function spaces : introduction to functional analysis with applications / Yutaka Yamamoto. p. cm. -- (Other titles in applied mathematics) Includes bibliographical references and index. ISBN 978-1-611972-30-6 (alk. paper) 1. Functional analysis. 2. Engineering mathematics. I. Title. TA347.F86Y3613 2012 515’.7--dc23 2012010732 is a registered trademark. OT127_Yamamoto_FM.indd 4 6/20/2012 3:03:51 PM yybook (cid:2) (cid:2) 2012/7/9 pagev (cid:2) (cid:2) Contents Preface ix GlossaryofNotation xiii 1 VectorSpacesRevisited 1 1.1 Finite-DimensionalVectorSpaces . . . . . . . . . . . . . . . . . . . . 1 1.2 LinearMappingsandMatrices . . . . . . . . . . . . . . . . . . . . . 14 1.3 SubspacesandQuotientSpaces . . . . . . . . . . . . . . . . . . . . . 19 1.4 DualityandDualSpaces. . . . . . . . . . . . . . . . . . . . . . . . . 30 2 NormedLinearSpacesandBanachSpaces 39 2.1 NormedLinearSpaces. . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 BanachSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3 ClosedLinearSubspacesandQuotientSpaces . . . . . . . . . . . . . 51 2.4 Banach’sOpenMappingandClosedGraphTheorems . . . . . . . . . 54 2.5 Baire’sCategoryTheorem . . . . . . . . . . . . . . . . . . . . . . . . 55 3 InnerProductandHilbertSpaces 59 3.1 InnerProductSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 HilbertSpace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 ProjectionTheoremandBestApproximation . . . . . . . . . . . . . . 73 4 DualSpaces 77 4.1 DualSpacesandTheirNorms . . . . . . . . . . . . . . . . . . . . . . 77 4.2 TheRiesz–FréchetTheorem . . . . . . . . . . . . . . . . . . . . . . . 81 ∗ 4.3 WeakandWeak Topologies . . . . . . . . . . . . . . . . . . . . . . 82 4.4 DualityBetweenSubspacesandQuotientSpaces . . . . . . . . . . . . 85 5 TheSpaceL(X,Y)ofLinearOperators 89 5.1 TheSpaceL(X,Y) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 DualMappings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 InverseOperators,Spectra,andResolvents . . . . . . . . . . . . . . . 92 5.4 AdjointOperatorsinHilbertSpace . . . . . . . . . . . . . . . . . . . 94 5.5 ExamplesofAdjointOperators . . . . . . . . . . . . . . . . . . . . . 96 5.6 HermitianOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7 CompactOperatorsandSpectralResolution . . . . . . . . . . . . . . 101 v (cid:2) (cid:2) (cid:2) (cid:2) yybook (cid:2) (cid:2) 2012/7/9 pagevi (cid:2) (cid:2) vi Contents 6 SchwartzDistributions 107 6.1 WhatAreDistributions? . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 TheSpaceofDistributions . . . . . . . . . . . . . . . . . . . . . . . 112 6.3 DifferentiationofDistributions . . . . . . . . . . . . . . . . . . . . . 116 6.4 SupportofDistributions . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.5 ConvergenceofDistributions . . . . . . . . . . . . . . . . . . . . . . 119 6.6 ConvolutionofDistributions . . . . . . . . . . . . . . . . . . . . . . 126 6.7 SystemTheoreticInterpretationofConvolution . . . . . . . . . . . . 131 6.8 ApplicationofConvolution . . . . . . . . . . . . . . . . . . . . . . . 132 7 FourierSeriesandFourierTransform 141 7.1 FourierSeriesExpansioninL2[−π,π]orofPeriodicFunctions. . . . 141 7.2 FourierSeriesExpansionofDistributions. . . . . . . . . . . . . . . . 147 7.3 FourierTransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7.4 SpaceS ofRapidlyDecreasingFunctions . . . . . . . . . . . . . . . 152 7.5 FourierTransformandConvolution . . . . . . . . . . . . . . . . . . . 156 7.6 ApplicationtotheSamplingTheorem . . . . . . . . . . . . . . . . . . 159 8 LaplaceTransform 165 8.1 LaplaceTransformforDistributions . . . . . . . . . . . . . . . . . . 165 8.2 InverseLaplaceTransforms . . . . . . . . . . . . . . . . . . . . . . . 170 8.3 Final-ValueTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9 HardySpaces 175 9.1 HardySpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 9.2 PoissonKernelandBoundaryValues . . . . . . . . . . . . . . . . . . 178 9.3 CanonicalFactorization . . . . . . . . . . . . . . . . . . . . . . . . . 184 9.4 ShiftOperators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 9.5 NehariApproximationandGeneralizedInterpolation . . . . . . . . . 190 9.6 ApplicationofSarason’sTheorem. . . . . . . . . . . . . . . . . . . . 196 9.7 Nehari’sTheorem—Supplements . . . . . . . . . . . . . . . . . . . . 201 10 ApplicationstoSystemsandControl 203 10.1 LinearSystemsandControl . . . . . . . . . . . . . . . . . . . . . . . 203 10.2 ControlandFeedback . . . . . . . . . . . . . . . . . . . . . . . . . . 205 10.3 ControllabilityandObservability . . . . . . . . . . . . . . . . . . . . 207 10.4 Input/OutputCorrespondence . . . . . . . . . . . . . . . . . . . . . . 215 10.5 Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 ∞ 10.6 H Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 10.7 SolutiontotheSensitivityMinimizationProblem . . . . . . . . . . . 224 10.8 GeneralSolutionforDistributedParameterSystems . . . . . . . . . . 229 10.9 SupplementaryRemarks . . . . . . . . . . . . . . . . . . . . . . . . . 230 A SomeBackgroundonSets,Mappings,andTopology 233 A.1 SetsandMappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 A.2 Reals,UpperBounds,etc. . . . . . . . . . . . . . . . . . . . . . . . . 235 A.3 TopologicalSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 A.4 ProductTopologicalSpaces . . . . . . . . . . . . . . . . . . . . . . . 239 (cid:2) (cid:2) (cid:2) (cid:2) yybook (cid:2) (cid:2) 2012/7/9 pagevii (cid:2) (cid:2) Contents vii A.5 CompactSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 A.6 NormsandSeminorms . . . . . . . . . . . . . . . . . . . . . . . . . 241 A.7 ProofoftheHahn–BanachTheorem . . . . . . . . . . . . . . . . . . 241 A.8 TheHölder–MinkowskiInequalities . . . . . . . . . . . . . . . . . . 245 B TableofLaplaceTransforms 247 C Solutions 249 C.1 Chapter1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 C.2 Chapter2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 C.3 Chapter3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 C.4 Chapter4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 C.5 Chapter5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 C.6 Chapter6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 C.7 Chapter7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 C.8 Chapter8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 C.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 D BibliographicalNotes 259 Bibliography 261 Index 265 (cid:2) (cid:2) (cid:2) (cid:2) yybook (cid:2) (cid:2) 2012/7/9 pageix (cid:2) (cid:2) Preface This book intends to give an accessible account of applied mathematics, mainly of analysis subjects, with emphasis on functional analysis. The intended readers are senior orgraduatestudentswhowishtostudyanalyticalmethodsinscienceandengineeringand researcherswhoareinterestedinfunctionalanalyticmethods. Needlesstosay, scientistsandengineerscanbenefitfrommathematics. Thisisnot confinedtoameremeansofcomputationalaid,andindeedthebenefitcanbegreaterand far-reaching if one becomes more familiar with advanced topics such as function spaces, operators, and generalized functions. This book aims at giving an accessible account of elementary real analysis, from normed spaces to Hilbert and Banach spaces, with some extendedtreatmentofdistributiontheory,FourierandLaplaceanalyses,andHardyspaces, accompanied by some applications to linear systems and control theory. In short, it is a modernizedversionofwhathasbeentaughtasappliedanalysisinscienceandengineering schools. Tothisend,amoreconceptualunderstandingisrequired. Infact,conceptualunder- standingisnotonlyindispensablebutalsoagreatadvantageeveninmanipulatingcompu- tational tools. Unfortunately, it is not always accomplished, and indeed often left aside. Mathematicsisoftenlearnedbymanypeopleasacollectionofmeretechniquesandswal- lowedasveryformalprocedures. This is deplorable, but from my own experience of teaching, its cure seems quite difficult. Forstudentsandnovices,definitionsareoftendifficulttounderstand,andmathe- maticalstructuresarehardtopenetrate,letalonethebackgroundmotivationastohowand whytheyareformulatedandstudied. This book has a dual purpose: one is to provide young students with an accessible accountofaconceptualunderstandingoffundamentaltoolsinappliedmathematics. The otheristogivethosewhoalreadyhavesomeexposuretoappliedmathematics,butwishto acquireamoreunifiedandstreamlinedcomprehensionofthissubject,adeeperunderstand- ingthroughbackgroundmotivations. Toaccomplishthis,Ihaveattemptedto • elaborateupontheunderlyingmotivationoftheconceptsthatarebeingdiscussedand • describehowonecangetanideaforaproofandhowoneshouldformalizetheproof. I emphasized more verbal, often informal, explanations rather than streams of logically complete yet rather formal and detached arguments that are often difficult to follow for nonexperts. ix (cid:2) (cid:2) (cid:2) (cid:2) yybook (cid:2) (cid:2) 2012/7/9 pagex (cid:2) (cid:2) x Preface Thetopicsthataredealtwithherearequitestandardandincludefundamentalnotions of vector spaces, normed, Banach, and Hilbert spaces, and the operators acting on them. They are in one way or another related to linearity, and understanding linear structures formsacoreofthetreatmentofthisbook. Ihavetriedtogiveaunifiedapproachtoreal analysis,suchasFourieranalysisandtheLaplacetransforms. Tothisend,distributionthe- ory gives an optimal platform. The second half of this book thus starts with distribution theory. Witharigoroustreatmentofthistheory,thereaderwillseethatvariousfundamental results in Fourier and Laplace analyses can be understood in a unified way. Chapter 9 is devoted to a treatment of Hardy spaces. This is followed by a treatment of a remarkably successfulapplicationinmoderncontroltheoryinChapter10. Letusgiveamoredetailedoverviewofthecontentsofthebook.Asanintroduction, we start with some basics in vector spaces in Chapter 1. This chapter intends to give a conceptualoverviewandreviewofvectorspaces. Thistopicisoften,quiteunfortunately, ahiddenstumblingpointforstudentslackinganin-depthunderstandingofwhatlinearity isallabout. Ihavetriedtoilluminatetheconceptualsidesofthenotionofvectorspacesin thischapter. Sometimes,Ihaveattemptedtoshowtheideaofaprooffirstandthenshow that a complete proof is a “realization” of making such an idea logically more complete. Ihavealsochosentogivedetailedtreatmentsofdualandquotientspacesinthischapter. Theyareofteneitherverylightlytouchedonorneglectedcompletelyinstandardcourses inappliedmathematics. Iexpectthatthereaderwillbecomemoreaccustomedtostandard mathematicalthinkingasaresultofthischapter. FromChapter2on,weproceedtomoreadvancedtreatmentsofinfinite-dimensional spaces. Amongthem, normedlinearspacesaremostfundamentalandallowratherdirect generalizations of finite-dimensional spaces. Anew element here is the notion of norms, whichintroducestheconceptoftopology. Topologyplaysacentralroleinstudyinginfinite- dimensionalspacesandlinearmapsactingonthem. Normedspacesgivethefirststeptoward suchstudies. Aproblem is that limits cannot, generally, be taken freely for those sequences that may appear to converge (i.e., so-called Cauchy sequences). The crux of analysis lies in limiting processes, and to take full advantage of them, the space in question has to be “closed” under such operations. In other words, the space must be complete. Complete normedlinearspacesarecalledBanachspaces,andtherearemanyinterestingandpowerful theorems derived for them. If, further, the norm is derived from an inner product, the space is called a Hilbert space. Hilbert spaces possess a number of important properties due to the very nature of inner products—for example, the notion of orthogonality. The Rieszrepresentationtheoremforcontinuouslinearfunctionals,aswellasitsoutcomeofthe orthogonalprojectiontheorem,isatypicalconsequenceofaninnerproductstructureand completeness. Hilbertspaceappearsveryfrequentlyinmeasuringsignalsduetoitsaffinity with such concepts as energy, and hence in many optimization problems in science and engineeringapplications. Theproblemofbestapproximationisnaturallystudiedthrough theprojectiontheoremintheframeworkofHilbertspace. ThisisalsoatopicofChapter3. Discussing properties of spaces on their own will give only half the story. What is equallyimportantistheirinterrelationship,andthisexhibitsitselfthroughlinearoperators. In this connection, dual spaces play crucial roles in studying Banach and Hilbert spaces. We give in Chapter 5 a basic treatment of them and prove the spectral resolution theo- remforcompactself-adjointoperators—whatisknownastheHilbert–Schmidtexpansion theorem. (cid:2) (cid:2) (cid:2) (cid:2) yybook (cid:2) (cid:2) 2012/7/9 pagexi (cid:2) (cid:2) Preface xi We turn our attention to Schwartz distributions in Chapter 6. This theory makes transparent the treatments of many problems in analysis such as differential equations, Fourieranalysis(Chapter7),Laplacetransforms(Chapter8),andPoissonintegrals(Chap- ter9),anditishighlyvaluableinmanyareasofappliedmathematics,bothtechnicallyand conceptually. Inspiteofthisfact,thistheoryisoftenveryinformallytreatedinintroduc- tory books and thereby hardly appreciated by engineers. I have strived to explain why it is important and how some more rigorous treatments are necessary, attempting an easily accessibleaccountforthistheorywhilenotsacrificingmathematicalrigortoomuch. The usefulness of distributions hinges largely on the notion of the delta function (distribution). This is the unity element with respect to convolution, and this is why it appears so frequently in many situations of applied mathematics. Many basic results in applied mathematics are indeed understood from this viewpoint. For example, a Fourier series or Poisson’s integral formula is the convolution of an objective function with the Dirichlet or the Poisson kernel, and its convergence to such a target function is a result ofthefactthattherespectivekernelconvergestothedeltadistribution. Wetakethisasa leadingprincipleofthesecondhalfofthisbook,andIattemptedtoclarifythestructureof thislineofideasinthetreatmentsofsuchconvergenceresultsinChapter6,andsubsequent Chapters7and8dealingwithFourierandLaplacetransforms. Chapter9givesabasictreatmentofHardyspaces,whichinturnplayedafundamental ∞ roleinmoderncontroltheory. So-calledH controltheoryiswhatweareconcernedwith. Of particular interest is generalized interpolation theory given here, which also plays a fundamental role in this new control theory. We will prove Nehari’s theorem as well as Sarason’s theorem, along with the applications to the Nevanlinna–Pick interpolation and theCarathéodory–Fejértheorem. Wewillalsodiscusstherelationshipwithboundaryvalues and the inner-outer factorization theorem. I have tried to give an easy entry point to this theory. Chapter10isdevotedtobasiclinearcontrolsystemtheory. Startingwithaninverted pendulumexample,wewillseesuchbasicconceptsaslinearsystemmodels,theconceptof feedback, controllability, and observability, a realization problem, an input/output frame- ∞ work,andtransferfunctions,leadingtothesimplestcaseofH controltheory. Wewillsee solutionsviatheNevanlinna–Pickinterpolation,Nehari’stheorem,andSarason’stheorem, applyingtheresultsofChapter9. Fourieranalysis(Chapter7)andtheLaplacetransforms (Chapter8)alsoplaykeyroleshere. Thereaderwillnodoubtseepartofabeautifulappli- cationofHardyspacetheorytocontrolandsystems. Itishopedthatthischaptercanserve asaconciseintroductiontothosewhoarenotnecessarilyfamiliarwiththesubject. Itisalwaysadifficultquestionhowmuchpreliminaryknowledgeoneshouldassume andhowself-containedthebookshouldbe. Ihavemadethefollowingassumptions: • As prerequisite, I assumed that the reader has taken an elementary course in linear algebraandbasiccalculus. Roughlyspeaking,Iassumedthereaderisatthejunior orahigherlevelinscienceandengineeringschools. • Ididnotassumemuchadvancedknowledgebeyondthelevelabove. Thetheoryof integration(Lebesgueintegral)isdesirable,butIchosenottorelyonit. • However, if applied very rigorously, the above principles can lead to a logical dif- ficulty. Forexample, Fubini’stheoreminLebesgueintegrationtheory, variousthe- orems in general topology, etc., can be an obstacle for self-contained treatments. (cid:2) (cid:2) (cid:2) (cid:2) yybook (cid:2) (cid:2) 2012/7/9 pagexii (cid:2) (cid:2) xii Preface Itriedtogiveprecisereferencesinsuchcasesandnotoverloadthereaderwithsuch concepts. • SomefundamentalnotionsinsetsandtopologyareexplainedinAppendixA. Itried tomaketheexpositionaselementaryandintuitiveastobebeneficialtostudentswho arenotwellversedinsuchnotions. Someadvancedbackgroundmaterial, e.g., the Hahn–Banachtheorem,isalsogivenhere. This book is based on the Japanese version published by the Asakura Publishing Company,Ltd.,in1998. ThepresentEnglishversiondiffersfromthepredecessorinmany respects. Particularly, it now contains Chapter 10 for application to system and control theory,whichwasnotpresentintheJapaneseversion. Ihavealsomadeseveraladditions, butittookmuchlongerthanexpectedtocompletethisversion. Partofthereasonliesin itsdualpurpose—tomakethebookaccessibletothosewhofirststudytheabovesubjects andsimultaneouslyworthwhileforreferencepurposesonadvancedtopics.Agoodbalance wasnoteasytofind,butIhopethatthereaderfindsthebookhelpfulinbothrespects. ItisapleasuretoacknowledgetheprecioushelpIhavereceivedfrommanycolleagues andfriends,towhomIamsomuchindebted,notonlyduringthecourseofthepreparation ofthisbookbutalsooverthecourseofalong-rangefriendshipfromwhichIhavelearned somuch. Particularly,JanWillemsreadthroughthewholemanuscriptandgaveextensive andconstructivecomments. IamalsomostgratefulforhisfriendshipandwhatIlearned from numerous discussions with him. Likewise, I have greatly benefited from the com- mentsandcorrectionsmadebyThanosAntoulas,BrianAnderson,BruceFrancis,Tryphon Georgiou, Nobuyuki Higashimori, Pramod Khargonekar, Hitay Özbay, Eduardo Sontag, andMathukumalliVidyasagar. IwouldalsoliketoacknowledgethehelpofMasaakiNaga- haraandNaokiHayashiforpolishingsomeproofsandalsohelpingmeinpreparingsome figures. I wish to acknowledge the great help I received from the editors at SIAM in publishingthepresentbook. I would like to conclude this preface by thanking my family, particularly my wife Mamikoforhersupportineveryrespectinthepast30years. Withoutherhelpitwouldnot havebeenpossibletocompletethiswork. YutakaYamamoto Kyoto February,2012 (cid:2) (cid:2) (cid:2) (cid:2) yybook (cid:2) (cid:2) 2012/7/9 page203 (cid:2) (cid:2) Chapter 10 Applications to Systems and Control Moderncontrolandsystemtheoryisbuiltuponasolidmathematicalbasis.Advancedmath- ematical concepts developed in this book are indispensable for further in-depth study of elaboratetheoryofsystemsandcontrol. Weherepresentsomefundamentalsofthistheory. 10.1 Linear Systems and Control Many physical systems are described by differential equations, ordinary or partial. We oftenwishtocontrolsuchsystems,naturalorartificial. Inotherwords,givenasystem,we wantittobehaveinsuchawaythatisinsomesensedesirableforus. Normally,asystem may contain three types of variables: an input variable that drives the system, an output variable that can either be observed by some devices or affect the external environment, and a state variable that describes the internal behavior of the system which is not nec- essarily observable from the external environment. Summarizing, a differential equation descriptionmaytakethefollowingform: dx (t)=f(x(t),u(t)), (10.1) dt y(t)=g(x(t)), (10.2) wherex(t)∈Rn,u(t)∈Rm,andy(t)∈Rpdenote,respectively,thestate,input,andoutput variables. Thesetwoequationshavethestructurethat 1. starting with an initial state x at some time t , and for a given input u(t), t ≥0, 0 0 (10.1)describeshowthesystemstatex(t)evolvesintime,and 2. theoutputy(t)isdeterminedbythepresentvalueofthestatex(t)accordingto(10.2). The fundamental objective of control is to design or synthesize u(t) so as to make the abovesystembehavedesirably. Herethecontrolinputu(t)issomethingwecanmaneuver tocontrolthesystemstatex(t),andtheoutputy(t)isthencontrolledaccordingly. Ingeneral, it is necessary to make x(t) behave nicely rather than merely controlling the behavior of y(t)alone,astherecanbesomehiddenbehaviorinx(t)thatdoesnotexplicitlyappearin thatofy(t). 203 (cid:2) (cid:2) (cid:2) (cid:2)
Description: