From Local Area Networks to Space Area Networks: deployment-stage scalability analysis of a WiFi wireless communication link for a nano-satellite serving dual-type earth communities Jorge Cantero Gómez Department of Electronic Engineering ETSETB Technical University of Catalonia UPC BarcelonaTech A thesis submitted for the degree of Master in Telecommunications Engineering Advisors: Prof. Eduard Alarcón and Elisenda Bou-Balust September 2014 technical university of catalonia abstract of the etsetb master’s thesis Author: Jorge Cantero Gómez Title: From Local Area Networks to Space Area Networks: deployment-stage scalability analysis of a WiFi wireless communication link for a nano-satellite serving dual-type earth communities. Date: 09/2014 Language: English Number of pages:11+78 Department of Electronic Engineering Professorship: Energy Processing Integrated Circuits Advisors: Prof. Eduard Alarcón and Elisenda Bou-Balust The goal of this thesis was to study the feasibility and scalability, in terms of communications, of the ABS project which is being developed at the Technical University of Catalonia UPC BarcelonaTech with educational purposes aiming to design a phone-based nano-statellite (or PhoneSat). The satellite will be able to establish connections with both the ground segment and other nano-satellites through the standards compatibles with the mobile device such as GSM, WCDMA, HSDPA, LTE, Bluetooth and WiFi. The main focus of study was the development of an optimization-based method- ology in order to design the physical layer of the communication WiFi link taking into consideration that the ABS project amis to provide its services to a multiple type earth community. Thus, it has been made the optimization of the data downloaded by both users so that they are maximized under certain criteria such as the size of the receiving antenna and the power transmitted by the PhoneSat in order to benefit both ground and space segments. Finally, the optimization methodology has been applied and several scenarios as well as a scalability analysis are presented with the purpose of showing how optimal parameters change as the number of users varies. Additionally, it has been done a brief study to determine which is the best technology to establish a communication among phone-based satellites depending on the distance between them, exploratorily aiming nanosat constellation. Keywords: PoneSat, ABS, Optimization, Feasibility, Scalability, WiFi universidad politécnica de cataluña abstract de la etsetb tesis de master Nombre: Jorge Cantero Gómez Título: From Local Area Networks to Space Area Networks: deployment-stage scalability analysis of a WiFi wireless communication link for a nano-satellite serving dual-type earth communities. Fecha: 09/2014 Idioma: Inglés Número de páginas:11+78 Departamento de Ingeniería Electrónica Cátedra: Energy Processing Integrated Circuits Supervisores: Prof. Eduard Alarcón y Elisenda Bou-Balust El objetivo de esta tesis de master fue estudiar la viabilidad y escalabilidad, en cuanto a comunicaciones se refiere, del proyecto ABS que está siendo desarrol- lando en la Universidad Politécnica de Cataluña con fines educativos y que aspira a diseñar un nanosatélite controlado por un teléfono móvil (o PhoneSat). El satélite será capaz de establecer conexiones tanto con el segmento de tierra como con otros nanosatélites a través de lo estandares compatibles con el dispositivo móvil como son GSM, WCDMA, HSDPA, LTE, Bluetooth y WiFi. El principal foco de estudio fue el desarrollo de una metodología basada en la optimización para diseñar la capa física de la comunicación WiFi teniendo en consideración que el proyecto ABs pretende dar servicio a diferentes tipos de usuarios en tierra. Así, se ha realizado la optimización de los datos descargados por uno u otro usuario de forma que éstos sean máximos bajo ciertos criterios como el tamaño de la antena en recepción y la potencia transmitida por el PhoneSat de forma que beneficie tanto al segmento de tierra como al segmento del espacio. Finalmente, se ha aplicado la metodología de optimización y se han presentado varios escenarios así como un estudio de escalabilidad de los resultados con el objetivo de mostrar cómo cambian los parámetros óptimos al variar el número de usuarios. De forma adicional, se ha hecho un breve estudio para determinar cuál es la mejor tecnología para establecer una comunicación entre PhoneSats dependiendo de la distancia a la que se encuentran, con el objetivo de explorar constelaciones de nanosats. Palabras clave: PhoneSat, ABS, Optimización, Viabilidad, Escalabilidad, WiFi iv Acknowledgements This master’s thesis has been carried out in the Department of Signal Theory and Communications of the Technical University of Catalonia UPC BarcelonaTech be- tween February and September of 2014 under the supervision of Prof. Eduard Alarcón and the PhD Candidate Elisenda Bou-Balust. After the final project carried out one year ago to become a Telecommunication Engineer I thought I would never find another project involving satellites again. That is why, when my friend Iñigo del Portillo told me about this project, I was keen to join the satellite team. Thanks for thinking of me, Iñigo. I would also like to thank Eduard and Elisenda for giving me the chance to work in this project and for its attentive supervision during these months. I think I won’t be able to forget the never-ending arguments you had at the progress meet- ingswhileIwasjustlisteningandtryingtonottolosethethreadoftheconversation. Lastly, I would like to thank my family, especially my parents María del Carmen and Luis Javier for their support and trust during all my years of study, and more recently, for encourage me to take the master course and for being interested in this thesis during its realization. Barcelona, September 2014 Jorge Cantero Gómez v Contents Abstract ii Abstract (in Spanish) iii Acknowledgements iv Contents v List of Tables vii List of Figures viii Symbols and acronyms ix 1 Introduction 1 1.1 Rational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Context: Android Beyond the Stratosphere project . . . . . . . . . . 5 1.3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Theoretical background 8 2.1 Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Small satellites . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.2 Phone-based satellites . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Satellite Communication . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Electromagnetic radiation . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Space channel characteristics . . . . . . . . . . . . . . . . . . . 14 2.2.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Antenna parameters . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Parabolic antennas . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Patch antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Communication budget . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Link budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Design-oriented optimization-based methodology 29 3.1 Sat-to-ground optimization guidelines . . . . . . . . . . . . . . . . . . 30 3.1.1 Single Type User Scenario . . . . . . . . . . . . . . . . . . . . 30 3.1.2 Dual Type User Scenario . . . . . . . . . . . . . . . . . . . . . 31 3.1.3 Downloaded data . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Inter-Satellite Link optimization guidelines . . . . . . . . . . . . . . . 36 vi 4 Results 37 4.1 Single Type User Scenario . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1 Amateur Case Example . . . . . . . . . . . . . . . . . . . . . 37 4.1.2 Professional Case Example . . . . . . . . . . . . . . . . . . . . 38 4.2 Dual Type User Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3 Scalability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Sensitivity of the parabolic dish size . . . . . . . . . . . . . . . . . . . 42 4.5 Inter-Satellite Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Conclusions and future work 46 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 References 49 A Simulation tools 53 A.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A.2 AMSAT-IARU Link Model . . . . . . . . . . . . . . . . . . . . . . . . 54 A.3 LibreCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 B Matlab code for satellite-ground communication 55 C Nexus 5 specifications 64 C.1 WLAN 802.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 C.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 C.3 LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 C.4 HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 C.5 WCDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 C.6 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 D ISL details 77 D.1 LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 D.2 HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 D.3 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 vii List of Tables 1 Classification of spacecrafts by mass and cost [16]. . . . . . . . . . . . 9 2 Radio waves sorted in bands [34]. . . . . . . . . . . . . . . . . . . . . 13 3 Tropospheric attenuation. . . . . . . . . . . . . . . . . . . . . . . . . 16 4 OSI model [44]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 IP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 TCP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7 UDP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8 sat-to-ground link specifications . . . . . . . . . . . . . . . . . . . . . 29 9 Link parameters for amateur and professional users. . . . . . . . . . . 33 10 Sensitivity values for 802.11b/g. . . . . . . . . . . . . . . . . . . . . . 33 11 Amateur user results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 12 Professional user results. . . . . . . . . . . . . . . . . . . . . . . . . . 38 13 Dual-Type User Scenario Results. . . . . . . . . . . . . . . . . . . . . 38 viii List of Figures 1 WiFi Wireless Communication link between a LEO satellite and a dual-type earth community (amateur and professional). . . . . . . . . 2 2 Sputnik-1, the first object launched into orbit by man [17]. . . . . . . 4 3 CubeSat sizes [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Poly Picosatellite Orbital Deployer (P-POD) [29]. . . . . . . . . . . . 10 5 Electromagnetic spectrum [33]. . . . . . . . . . . . . . . . . . . . . . 13 6 Isotropic, omnidirectional and directive radiation patterns [48]. . . . . 21 7 Parabolic antennas in a ground station. . . . . . . . . . . . . . . . . . 23 8 One-half wavelength patch antenna. . . . . . . . . . . . . . . . . . . . 24 9 Circularly polarized patch with two orthogonal feeds [50]. . . . . . . . 25 10 Flow diagram for the single-user optimization. . . . . . . . . . . . . . 31 11 Flow diagram for the multi-user optimization. . . . . . . . . . . . . . 32 12 BER comparison for 802.11 data rates [56]. . . . . . . . . . . . . . . . 34 13 Amateur User downloaded data. . . . . . . . . . . . . . . . . . . . . . 35 14 Professional User downloaded data. . . . . . . . . . . . . . . . . . . . 35 15 Signal power depending on n and n . . . . . . . . . . . . . . . . . 39 au pu 16 Bit rate depending on n and n . . . . . . . . . . . . . . . . . . . . 40 au pu 17 Amateur Users Parabolic diameter. . . . . . . . . . . . . . . . . . . . 40 18 Professional Users Parabolic diameter. . . . . . . . . . . . . . . . . . 41 19 Downloaded data for the Dual-Type User Scenario. . . . . . . . . . . 41 20 Impact of variations in amateur and professional antenna diameters upon downloaded data. . . . . . . . . . . . . . . . . . . . . . . . . . . 43 21 Best technology at short distances. . . . . . . . . . . . . . . . . . . . 44 22 Best technology at long distances. . . . . . . . . . . . . . . . . . . . . 44 23 Best LTE band and data rate depending on distance. . . . . . . . . . 77 24 Best HSDPA band and data rate depending on distance. . . . . . . . 77 25 Best GSM band and data rate depending on distance. . . . . . . . . . 78 ix Symbols and acronyms Symbols A Effective area of an antenna [m2] R b Bit, minimum unit of information bps Bits per time unit B Bandwidth [Hz] c Speed of light ≈ 3·108 [m/s] D Antenna directivity dB Decibel dBi Decibel referenced to an isotropic antenna E Energy [J] E Energy per bit [J/b] b El Elevation [deg] f Frequency [Hz] f Working frequency 0 G Antenna gain [dB] g Gram Hz Hertz I Electric current [A] k Boltzmann’s constant ≈ 1.38·10−23 [J/K] L Attenuation [dB] m Meter N Noise power spectral density [W/Hz] 0 P Power [dB, dBm] p Probability r Distance between satellite and ground station [m] R Resistance [Ω] R Bit rate [b/s] b S Signal power at the receiver [W] t Time [s] T System temperature [K] sys v Relative speed of the satellite [m/s] W Watt X Reactance [Ω] Z Impedance [Ω] (Z for the antenna and Z for the load) A L λ Wavelength [m] µ Antenna efficiency l ω Angular frequency [rad] o Degree $ Dollar x Acronyms ABS Android Beyond the Stratosphere ARTOS Android Real Time Operating System ADCS Attitude Determination and Control System ADS Antenna Deployment System AMSAT Radio Amateur Satellite Corporation AWGN Additive White Gaussian Noise BER Bit Error Rate BW Bandwidth CAD Computer-Aided Design COM Communications subsystem CP Circular Polarization CSMA/CA Carrier Sense Multiple Access with Collision Avoidance CubeSat Standard for nanosatellites DIFS Distributed Inter-Frame Space DVB-S Digital Video Broadcasting by Satellite EIRP Equivalent Isotropic Radiated Power EMR Electro-Magnetic Radiation EPS Electrical Power Subsystem GEO Geostationary Orbit GS Ground Station GSM Global System for Mobile Communications HSDPA High Speed Downlink Packet Access IARU International Amateur Radio Union IEEE Institute of Electrical and Electronics Engineers IP Internet Protocol ISL Inter-Satellite Link ISM Industrial, Scientific and Medical ISO International Organization for Standardization ITU International Telecommunication Union LED Light-Emitting Diode LEO Low Earth Orbit LLC Logical Link Control LTE Long Term Evolution LV Launch Vehicle MAC Media Access Control MATLAB MATix LABoratory MEO Medium Earth Orbit MIMO Multiple Input - Multiple Output MTU Maximum Transfer Unit M2M Machine to Machine NFC Near Field Communications OBC On-Board Computer OFDM Orthogonal Frequency Division Multiplexing
Description: