Table Of ContentFrom Local Area Networks to Space
Area Networks:
deployment-stage scalability analysis of a
WiFi wireless communication link for a
nano-satellite serving dual-type earth
communities
Jorge Cantero Gómez
Department of Electronic Engineering
ETSETB
Technical University of Catalonia UPC BarcelonaTech
A thesis submitted for the degree of
Master in Telecommunications Engineering
Advisors: Prof. Eduard Alarcón and Elisenda Bou-Balust
September 2014
technical university of catalonia abstract of the
etsetb master’s thesis
Author: Jorge Cantero Gómez
Title: From Local Area Networks to Space Area Networks: deployment-stage
scalability analysis of a WiFi wireless communication link for a
nano-satellite serving dual-type earth communities.
Date: 09/2014 Language: English Number of pages:11+78
Department of Electronic Engineering
Professorship: Energy Processing Integrated Circuits
Advisors: Prof. Eduard Alarcón and Elisenda Bou-Balust
The goal of this thesis was to study the feasibility and scalability, in terms of
communications, of the ABS project which is being developed at the Technical
University of Catalonia UPC BarcelonaTech with educational purposes aiming
to design a phone-based nano-statellite (or PhoneSat). The satellite will be able
to establish connections with both the ground segment and other nano-satellites
through the standards compatibles with the mobile device such as GSM,
WCDMA, HSDPA, LTE, Bluetooth and WiFi.
The main focus of study was the development of an optimization-based method-
ology in order to design the physical layer of the communication WiFi link taking
into consideration that the ABS project amis to provide its services to a multiple
type earth community. Thus, it has been made the optimization of the data
downloaded by both users so that they are maximized under certain criteria such
as the size of the receiving antenna and the power transmitted by the PhoneSat
in order to benefit both ground and space segments. Finally, the optimization
methodology has been applied and several scenarios as well as a scalability
analysis are presented with the purpose of showing how optimal parameters
change as the number of users varies.
Additionally, it has been done a brief study to determine which is the best
technology to establish a communication among phone-based satellites depending
on the distance between them, exploratorily aiming nanosat constellation.
Keywords: PoneSat, ABS, Optimization, Feasibility, Scalability, WiFi
universidad politécnica de cataluña abstract de la
etsetb tesis de master
Nombre: Jorge Cantero Gómez
Título: From Local Area Networks to Space Area Networks: deployment-stage
scalability analysis of a WiFi wireless communication link for a
nano-satellite serving dual-type earth communities.
Fecha: 09/2014 Idioma: Inglés Número de páginas:11+78
Departamento de Ingeniería Electrónica
Cátedra: Energy Processing Integrated Circuits
Supervisores: Prof. Eduard Alarcón y Elisenda Bou-Balust
El objetivo de esta tesis de master fue estudiar la viabilidad y escalabilidad, en
cuanto a comunicaciones se refiere, del proyecto ABS que está siendo desarrol-
lando en la Universidad Politécnica de Cataluña con fines educativos y que aspira
a diseñar un nanosatélite controlado por un teléfono móvil (o PhoneSat). El
satélite será capaz de establecer conexiones tanto con el segmento de tierra como
con otros nanosatélites a través de lo estandares compatibles con el dispositivo
móvil como son GSM, WCDMA, HSDPA, LTE, Bluetooth y WiFi.
El principal foco de estudio fue el desarrollo de una metodología basada en la
optimización para diseñar la capa física de la comunicación WiFi teniendo en
consideración que el proyecto ABs pretende dar servicio a diferentes tipos de
usuarios en tierra. Así, se ha realizado la optimización de los datos descargados
por uno u otro usuario de forma que éstos sean máximos bajo ciertos criterios
como el tamaño de la antena en recepción y la potencia transmitida por el
PhoneSat de forma que beneficie tanto al segmento de tierra como al segmento
del espacio. Finalmente, se ha aplicado la metodología de optimización y se han
presentado varios escenarios así como un estudio de escalabilidad de los resultados
con el objetivo de mostrar cómo cambian los parámetros óptimos al variar el
número de usuarios.
De forma adicional, se ha hecho un breve estudio para determinar cuál es la
mejor tecnología para establecer una comunicación entre PhoneSats dependiendo
de la distancia a la que se encuentran, con el objetivo de explorar constelaciones
de nanosats.
Palabras clave: PhoneSat, ABS, Optimización, Viabilidad, Escalabilidad, WiFi
iv
Acknowledgements
This master’s thesis has been carried out in the Department of Signal Theory and
Communications of the Technical University of Catalonia UPC BarcelonaTech be-
tween February and September of 2014 under the supervision of Prof. Eduard
Alarcón and the PhD Candidate Elisenda Bou-Balust.
After the final project carried out one year ago to become a Telecommunication
Engineer I thought I would never find another project involving satellites again.
That is why, when my friend Iñigo del Portillo told me about this project, I was
keen to join the satellite team. Thanks for thinking of me, Iñigo.
I would also like to thank Eduard and Elisenda for giving me the chance to
work in this project and for its attentive supervision during these months. I think
I won’t be able to forget the never-ending arguments you had at the progress meet-
ingswhileIwasjustlisteningandtryingtonottolosethethreadoftheconversation.
Lastly, I would like to thank my family, especially my parents María del Carmen
and Luis Javier for their support and trust during all my years of study, and more
recently, for encourage me to take the master course and for being interested in this
thesis during its realization.
Barcelona, September 2014
Jorge Cantero Gómez
v
Contents
Abstract ii
Abstract (in Spanish) iii
Acknowledgements iv
Contents v
List of Tables vii
List of Figures viii
Symbols and acronyms ix
1 Introduction 1
1.1 Rational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Context: Android Beyond the Stratosphere project . . . . . . . . . . 5
1.3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Theoretical background 8
2.1 Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Small satellites . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Phone-based satellites . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Satellite Communication . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Electromagnetic radiation . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Space channel characteristics . . . . . . . . . . . . . . . . . . . 14
2.2.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Antenna parameters . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Parabolic antennas . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Patch antennas . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Communication budget . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 Link budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Design-oriented optimization-based methodology 29
3.1 Sat-to-ground optimization guidelines . . . . . . . . . . . . . . . . . . 30
3.1.1 Single Type User Scenario . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Dual Type User Scenario . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Downloaded data . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Inter-Satellite Link optimization guidelines . . . . . . . . . . . . . . . 36
vi
4 Results 37
4.1 Single Type User Scenario . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.1 Amateur Case Example . . . . . . . . . . . . . . . . . . . . . 37
4.1.2 Professional Case Example . . . . . . . . . . . . . . . . . . . . 38
4.2 Dual Type User Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Scalability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Sensitivity of the parabolic dish size . . . . . . . . . . . . . . . . . . . 42
4.5 Inter-Satellite Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Conclusions and future work 46
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References 49
A Simulation tools 53
A.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2 AMSAT-IARU Link Model . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3 LibreCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B Matlab code for satellite-ground communication 55
C Nexus 5 specifications 64
C.1 WLAN 802.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
C.2 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.3 LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.4 HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.5 WCDMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
C.6 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
D ISL details 77
D.1 LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.2 HSDPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.3 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
vii
List of Tables
1 Classification of spacecrafts by mass and cost [16]. . . . . . . . . . . . 9
2 Radio waves sorted in bands [34]. . . . . . . . . . . . . . . . . . . . . 13
3 Tropospheric attenuation. . . . . . . . . . . . . . . . . . . . . . . . . 16
4 OSI model [44]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5 IP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 TCP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 UDP header. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8 sat-to-ground link specifications . . . . . . . . . . . . . . . . . . . . . 29
9 Link parameters for amateur and professional users. . . . . . . . . . . 33
10 Sensitivity values for 802.11b/g. . . . . . . . . . . . . . . . . . . . . . 33
11 Amateur user results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12 Professional user results. . . . . . . . . . . . . . . . . . . . . . . . . . 38
13 Dual-Type User Scenario Results. . . . . . . . . . . . . . . . . . . . . 38
viii
List of Figures
1 WiFi Wireless Communication link between a LEO satellite and a
dual-type earth community (amateur and professional). . . . . . . . . 2
2 Sputnik-1, the first object launched into orbit by man [17]. . . . . . . 4
3 CubeSat sizes [29]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Poly Picosatellite Orbital Deployer (P-POD) [29]. . . . . . . . . . . . 10
5 Electromagnetic spectrum [33]. . . . . . . . . . . . . . . . . . . . . . 13
6 Isotropic, omnidirectional and directive radiation patterns [48]. . . . . 21
7 Parabolic antennas in a ground station. . . . . . . . . . . . . . . . . . 23
8 One-half wavelength patch antenna. . . . . . . . . . . . . . . . . . . . 24
9 Circularly polarized patch with two orthogonal feeds [50]. . . . . . . . 25
10 Flow diagram for the single-user optimization. . . . . . . . . . . . . . 31
11 Flow diagram for the multi-user optimization. . . . . . . . . . . . . . 32
12 BER comparison for 802.11 data rates [56]. . . . . . . . . . . . . . . . 34
13 Amateur User downloaded data. . . . . . . . . . . . . . . . . . . . . . 35
14 Professional User downloaded data. . . . . . . . . . . . . . . . . . . . 35
15 Signal power depending on n and n . . . . . . . . . . . . . . . . . 39
au pu
16 Bit rate depending on n and n . . . . . . . . . . . . . . . . . . . . 40
au pu
17 Amateur Users Parabolic diameter. . . . . . . . . . . . . . . . . . . . 40
18 Professional Users Parabolic diameter. . . . . . . . . . . . . . . . . . 41
19 Downloaded data for the Dual-Type User Scenario. . . . . . . . . . . 41
20 Impact of variations in amateur and professional antenna diameters
upon downloaded data. . . . . . . . . . . . . . . . . . . . . . . . . . . 43
21 Best technology at short distances. . . . . . . . . . . . . . . . . . . . 44
22 Best technology at long distances. . . . . . . . . . . . . . . . . . . . . 44
23 Best LTE band and data rate depending on distance. . . . . . . . . . 77
24 Best HSDPA band and data rate depending on distance. . . . . . . . 77
25 Best GSM band and data rate depending on distance. . . . . . . . . . 78
ix
Symbols and acronyms
Symbols
A Effective area of an antenna [m2]
R
b Bit, minimum unit of information
bps Bits per time unit
B Bandwidth [Hz]
c Speed of light ≈ 3·108 [m/s]
D Antenna directivity
dB Decibel
dBi Decibel referenced to an isotropic antenna
E Energy [J]
E Energy per bit [J/b]
b
El Elevation [deg]
f Frequency [Hz]
f Working frequency
0
G Antenna gain [dB]
g Gram
Hz Hertz
I Electric current [A]
k Boltzmann’s constant ≈ 1.38·10−23 [J/K]
L Attenuation [dB]
m Meter
N Noise power spectral density [W/Hz]
0
P Power [dB, dBm]
p Probability
r Distance between satellite and ground station [m]
R Resistance [Ω]
R Bit rate [b/s]
b
S Signal power at the receiver [W]
t Time [s]
T System temperature [K]
sys
v Relative speed of the satellite [m/s]
W Watt
X Reactance [Ω]
Z Impedance [Ω] (Z for the antenna and Z for the load)
A L
λ Wavelength [m]
µ Antenna efficiency
l
ω Angular frequency [rad]
o Degree
$ Dollar
x
Acronyms
ABS Android Beyond the Stratosphere
ARTOS Android Real Time Operating System
ADCS Attitude Determination and Control System
ADS Antenna Deployment System
AMSAT Radio Amateur Satellite Corporation
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BW Bandwidth
CAD Computer-Aided Design
COM Communications subsystem
CP Circular Polarization
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CubeSat Standard for nanosatellites
DIFS Distributed Inter-Frame Space
DVB-S Digital Video Broadcasting by Satellite
EIRP Equivalent Isotropic Radiated Power
EMR Electro-Magnetic Radiation
EPS Electrical Power Subsystem
GEO Geostationary Orbit
GS Ground Station
GSM Global System for Mobile Communications
HSDPA High Speed Downlink Packet Access
IARU International Amateur Radio Union
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
ISL Inter-Satellite Link
ISM Industrial, Scientific and Medical
ISO International Organization for Standardization
ITU International Telecommunication Union
LED Light-Emitting Diode
LEO Low Earth Orbit
LLC Logical Link Control
LTE Long Term Evolution
LV Launch Vehicle
MAC Media Access Control
MATLAB MATix LABoratory
MEO Medium Earth Orbit
MIMO Multiple Input - Multiple Output
MTU Maximum Transfer Unit
M2M Machine to Machine
NFC Near Field Communications
OBC On-Board Computer
OFDM Orthogonal Frequency Division Multiplexing
Description:Bit, minimum unit of information Wireless Application Protocol most any computer and smartphone- is envisioned as a key technology [8, 9]. 1) targeting a space area network between a Google phone-based nano- .. making emphasis in the two antennas selected, the parabolic and the patch