ebook img

Frobenius Splitting Methods in Geometry and Representation Theory PDF

258 Pages·2005·1.405 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Frobenius Splitting Methods in Geometry and Representation Theory

Progress in Mathematics Volume231 SeriesEditors HymanBass JosephOesterle´ AlanWeinstein Michel Brion Shrawan Kumar Frobenius Splitting Methods in Geometry and Representation Theory Birkha¨user Boston • Basel • Berlin MichelBrion ShrawanKumar Universite´Grenoble1–CNRS UniversityofNorthCarolina InstitutFourier DepartmentofMathematics 38402St.-Martind’He`resCedex ChapelHill,NC27599 France U.S.A. AMSSubjectClassifications:13A35,13D02,14C05,14E15,14F10,14F17,14L30,14M05,14M15, 14M17,14M25,16S37,17B10,17B20,17B45,20G05,20G15 LibraryofCongressCataloging-in-PublicationData Brion,Michel,1958- Frobeniussplittingmethodsingeometryandrepresentationtheory/MichelBrion, ShrawanKumar. p.cm.–(Progressinmathematics;v.231) Includesbibliographicalreferencesandindex. ISBN0-8176-4191-2(alk.paper) 1.Algebraicvarieties.2.Frobeniusalgebras.3.Representationsofgroups.I.Kumar,S. (Shrawan),1953-II.Title.III.Progressinmathematics(Boston,Mass.);v.231. QA564.B742004 516’.3’53–dc22 2004047645 ISBN0-8176-4191-2 Printedonacid-freepaper. (cid:1)c2005Birkha¨userBoston Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(Birkha¨userBoston,c/oSpringerScience+BusinessMediaInc.,Rights andPermissions,233SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsincon- nectionwithreviewsorscholarlyanalysis.Useinconnectionwithanyformofinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynow knownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. (TXQ/HP) 987654321 SPIN10768278 Birkha¨userisapartofSpringerScience+BusinessMedia www.birkhauser.com Contents Preface vii 1 FrobeniusSplitting: GeneralTheory 1 1.1 Basicdefinitions,properties,andexamples. . . . . . . . . . . . . . . 2 1.2 ConsequencesofFrobeniussplitting . . . . . . . . . . . . . . . . . . 12 1.3 Criteriaforsplitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Splittingrelativetoadivisor . . . . . . . . . . . . . . . . . . . . . . 35 1.5 Consequencesofdiagonalsplitting . . . . . . . . . . . . . . . . . . . 41 1.6 Fromcharacteristicptocharacteristic0 . . . . . . . . . . . . . . . . 53 2 FrobeniusSplittingofSchubertVarieties 59 2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.2 FrobeniussplittingoftheBSDHvarietiesZ . . . . . . . . . . . . . 64 w 2.3 SomemoresplittingsofG/B andG/B×G/B . . . . . . . . . . . . 72 3 CohomologyandGeometryofSchubertVarieties 83 3.1 CohomologyofSchubertvarieties . . . . . . . . . . . . . . . . . . . 85 3.2 NormalityofSchubertvarieties . . . . . . . . . . . . . . . . . . . . . 91 3.3 Demazurecharacterformula . . . . . . . . . . . . . . . . . . . . . . 95 3.4 Schubertvarietieshaverationalresolutions . . . . . . . . . . . . . . 100 3.5 HomogeneouscoordinateringsofSchubertvarieties areKoszulalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4 CanonicalSplittingandGoodFiltration 109 4.1 Canonicalsplitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Goodfiltrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.3 ProofofthePRVKconjectureanditsrefinement. . . . . . . . . . . . 142 5 CotangentBundlesofFlagVarieties 153 5.1 Splittingofcotangentbundlesofflagvarieties . . . . . . . . . . . . . 155 5.2 Cohomologyvanishingofcotangentbundlesofflagvarieties . . . . . 169 5.3 Geometryofthenilpotentandsubregularcones . . . . . . . . . . . . 178 vi Contents 6 EquivariantEmbeddingsofReductiveGroups 183 6.1 Thewonderfulcompactification . . . . . . . . . . . . . . . . . . . . 184 6.2 Reductiveembeddings . . . . . . . . . . . . . . . . . . . . . . . . . 197 7 HilbertSchemesofPointsonSurfaces 207 7.1 Symmetricproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 7.2 Hilbertschemesofpoints . . . . . . . . . . . . . . . . . . . . . . . . 216 7.3 TheHilbert–Chowmorphism . . . . . . . . . . . . . . . . . . . . . . 220 7.4 Hilbertschemesofpointsonsurfaces . . . . . . . . . . . . . . . . . 224 7.5 SplittingofHilbertschemesofpointsonsurfaces . . . . . . . . . . . 227 Bibliography 231 Index 247 Preface In the 1980s, Mehta and Ramanathan made important breakthroughs in the study of SchubertvarietiesbyintroducingthenotionofaFrobeniussplitvarietyandcompatibly splitsubvarietiesforalgebraicvarietiesinpositivecharacteristics. Thiswasrefinedby RamananandRamanathanviatheirnotionofFrobeniussplittingrelativetoaneffective divisor. EventhoughmostoftheprojectivevarietiesarenotFrobeniussplit,thosewhichare haveremarkablegeometricandcohomologicalproperties,e.g.,allthehighercohomol- ogygroupsofamplelinebundlesarezero. Interestingly,manyvarietieswherealinear algebraic group acts with a dense orbit turn out to be Frobenius split. This includes theflagvarieties,whicharesplitcompatiblywiththeirSchubertsubvarieties,relative toacertainampledivisor;Bott–Samelson–Demazure–Hansenvarieties;theproductof twoflagvarietiesforthesamegroupG,whicharesplitcompatiblywiththeirG-stable closedsubvarieties;cotangentbundlesofflagvarieties;andequivariantembeddingsof anyconnectedreductivegroup,e.g.,toricvarieties. TheFrobeniussplittingoftheabovementionedvarietiesyieldsimportantgeometric results: Schubertvarietieshaverationalsingularities,andtheyareprojectivelynormal and projectively Cohen–Macaulay in the projective embedding given by any ample line bundle (in particular, they are normal and Cohen–Macaulay); the corresponding homogeneous coordinate rings are Koszul algebras; the intersection of any number ofSchubertvarietiesisreduced; thefullandsubregularnilpotentconeshaverational Gorensteinsingularities;theequivariantembeddingsofreductivegroupshaverational singularities. Moreover,theirproofsareshortandelegant. Further remarkable applications of Frobenius splitting concern the representa- tion theory of semisimple groups: the Demazure character formula; a proof of the Parthasarathy–RangoRao–Varadarajan–Kostantconjectureontheexistenceofcertain componentsinthetensorproductoftwodualWeylmodules;theexistenceofgoodfil- trationsforsuchtensorproductsandalsoforthecoordinateringsofsemisimplegroups inpositivecharacteristics,etc. ThetechniqueofFrobeniussplittinghasprovedtobesopowerfulintacklingnu- merousandvariedproblemsinalgebraictransformationgroupsthatithasbecomean indispensabletoolinthefield. Whilemuchoftheresearchhasappearedinjournals, nothing comprehensive exists in book form. This book systematically develops the viii Preface theory from scratch. Its various consequences and applications to problems in alge- braicgrouptheoryhavebeentreatedinfulldetailbringingthereadertotheforefronts of the area. We have included a large number of exercises, many of them covering complementarymaterial. Alsoincludedaresomeopenproblems. Thisbookissuitableformathematiciansandgraduatestudentsinterestedingeo- metricandrepresentation-theoreticaspectsofalgebraicgroupsandtheirflagvarieties. In addition, it is suitable for a slightly advanced graduate course on methods of pos- itivecharacteristicsingeometryandrepresentationtheory. Throughoutthebook, we assumesomefamiliaritywithalgebraicgeometry,specifically,withthecontentsofthe firstthreechaptersofHartshorne’sbook[Har–77]. Inaddition,inChapters2to6we assumefamiliaritywiththestructureofsemisimplealgebraicgroupsasexposedinthe booksofBorel[Bor–91]orSpringer[Spr–98]. Wealsorelyonsomebasicresultsof representationtheoryofalgebraicgroups,forwhichwerefertoJantzen’sbook[Jan– 03]. Wewarnthereaderthatthetextprovidesmuchmoreinformationthanisneeded formostapplications. Thus,oneshouldnothesitatetoskipaheadatwill,tracingback asneeded. Thefirst-namedauthorowesmanythankstoS.Druel,S.Guillermou,S.Inamdar, M. Decauwert, and G. Rémond for very useful discussions and comments on pre- liminary versions of this book. The second-named author expresses his gratitude to A.Ramanathan,V.Mehta,N.LauritzenandJ.F.Thomsenforalltheytaughthimabout Frobeniussplitting. Thesecond-namedauthoralsoacknowledgesthehospitalityofthe NewtonInstitute,Cambridge(England)duringJanuary–June,2001,wherepartofthis bookwaswritten. ThisprojectwaspartiallysupportedbyNSF.WethankJ.F.Thom- sen,W.vanderKallenandtworefereesforpointingoutinaccuraciesandsuggesting variousimprovements;andL.Trimblefortypingmanychaptersofthebook. Wethank Ann Kostant for her personal interest and care in this project and Elizabeth Loew of TEXniquesfortakingcareofthefinalformattingandlayout. MichelBrionandShrawanKumar September2004 NotationalConvention Thoseexerciseswhichareusedintheproofsinthetextappearwithastar. Frobenius Splitting Methods in Geometry and Representation Theory

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.