ebook img

Fractures in complex fluids: the case of transient networks PDF

2.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fractures in complex fluids: the case of transient networks

RheologicaActamanuscriptNo. (willbeinsertedbytheeditor) Fractures in Complex Fluids: the Case of Transient Networks ChristianLIGOURE SergeMORA · Received:date/Accepted:date 3 1 0 Abstract We present a comprehensive review of the current state of fracture phe- 2 nomenaintransientnetworks,awideclassofviscoelasticfluids.Wewillfirstdefine n what is a fracture in a complex fluid, and recall the main structural and rheological a J propertiesoftransientnetworks.Secondly,wereviewexperimentalreportsonfrac- 5 tures of transient networks in several configurations: shear-induced fractures, frac- 1 turesinHele-Shawcellsandfractureinextensionalgeometries(filamentstretching rheometryandpendantdropexperiments),includingfracturepropagation.Thetenta- ] tiveextensionoftheconceptsofbrittlenessandductilitytothefracturemechanisms t f in transient networks is also discussed. Finally, the different and apparently contra- o s dictorytheoreticalapproachesdevelopedtointerpretfracturenucleationwillbead- t. dressedandconfrontedtoexperimentalresults.Rationalizedcriteriatodiscriminate a therelevanceofthesedifferentmodelswillbeproposed. m - Keywords Fracture transientnetworks gels Non-linearviscoelasticity complex d fluids brittleness d·uctility fracturenuc·leatio·n fracturepropagation; · n · · · · o PACS 83.80.Kn PACS83.85.Cg 83.60.Df 62.20.Mk 62.20.Fe c · · · · [ 1 v 0 1 4 3 . 1 C.Ligoure 0 LaboratoireCharlesCoulomb-UMR5221 3 Universite´Montpellier2andCNRS 1 PlaceE.Bataillon.F-34095MontpellierCedex,FranceE-mail:[email protected] : v S.Mora i LaboratoireCharlesCoulomb-UMR5221 X Universite´Montpellier2andCNRS r PlaceE.Bataillon.F-34095MontpellierCedex,FranceE-mail:[email protected] a 2 ChristianLIGOURE,SergeMORA Listofsymbols G shearmodulus 0 τ relaxationtime η viscosity γ shearstrain γ˙ shearrate ε˙ elongationalstrainrate σ stress σ shearstress xy N orσ Firstnormalstressesdifference 1 N W Griffithenergycost L cracksize L Griffithlength c F interfacialcohesiveenergyperunitarea s t delay(waiting)fracturetime b t averagedelay(waiting)fracturetimepredictedbytheThermallyactivatedcracknucleationmodel 1 (cid:104) (cid:105) t averagedelay(waiting)fracturetimepredictedbytheActivatedbondrupturemodel 2 (cid:104) (cid:105) t averagedelay(waiting)fracturetimepredictedbytheSelfhealingandactivatedbondrupturenucleationmodel 3 (cid:104) (cid:105) σ failurestress c σ characteristicstressinvolvedintheThermallyactivatedcracknucleationmodel 1 σ characteristicstressinvolvedintheActivatedbondrupturemodel 2 σ characteristicstressinvolvedintheSelfhealingandactivatedbondrupturenucleationmodel 3 G strainenergyrelease V tipvelocity k Boltzmannconstant B T temperature ξ typicaldistancebetweenjunctionsinanetwork ρ density Q injectionrate δ lengthofasolvophobicend De Deborahnumber Γ Interfacialorsurfacetension 1 Introduction Theabilityofviscoelasticfluidstofracturehasbeenrecognizedinthesixties[Hut- ton(1963)]butremainsmuchlessdocumentedthatthebreakdownofsolidmaterials. The starting point for discussing fracture in viscoelastic fluids is coming up with a rigorousdefinitionoffracture.Thelayman’sdefinitionoffailureproposedforsolid materialsbyBuehler[Buehler(2010)]-failureoccurswhentheloadbearingcapac- ityofthematerialunderconsiderationissignificantlyreducedorcompletelylostdue toasuddendevelopment-isnotapplicableforfluids,whichaccommodatearbitrar- ilylargedeformationsafterafinitetime.AtamorefundamentallevelBuehlerargues thatfractureofamaterialduetomechanicaldeformationcanbeunderstoodascon- FracturesinComplexFluids:theCaseofTransientNetworks 3 versionofelasticenergyintobreakingofchemicalbondsorheat.Thisdefinitionis moreappropriateforfluidsbutdoesnotallowtodiscriminateclearlythefragmenta- tionofliquidsduetosomehydrodynamicinstability[EggersandVillermaux(2008)] andthefractureoffluidsreminiscentofthefractureofsolids.Forinstance,liquidjets serveasaparadigmforhydrodynamicinstabilityleadingtodropbreakupthroughthe Rayleigh-Plateaucapillaryinstability:inthiscase,intermolecular(elastic)energyis convertedatthesurfacevicinityalone.Atentativedefinitionforthefractureoffluid couldbethefollowing:”thefractureofafluidduetomechanicaldeformation,includ- ing flow, can be understood as a dissipation of bulk elastic energy into breaking of physicalorchemicalbonds.”Thisdefinitionexcludesthehydrodynamicinstabilities observedalsoininviscidorNewtonianfluidsofthefieldoffluid’sfracturebecause elasticenergythatcomeinplayisofinterfacialnaturesolely. Complex fluids denotes a (too) huge class of condensed-phase materials that posses mechanical properties intermediate between ordinary liquids and ordinary solids[Larson(1999)].Manyofthemare”solids”atshorttimeand”liquid”atlong time,hencetheyareviscoelastic;thecharacteristictimerequiredofthemtochange from”solid”to”liquid”variesfromfractionsofasecondtohours.Numerousexten- sivestudiesontheruptureofentangledpolymermeltsinextensionhavebeencarried outinthepastfortyyears.Thisallowstodistinguishtwozonesofeitherviscoelas- ticruptureorelasticfractureintheMalkin-Petriemastercurveintendedtoillustrate thedifferentextensionalresponseswithincreasingstrainratesofentangledpolymer melts[MalkinandPetrie(1997)].Thesetwotypesofrupturehavebeenrecentlyre- considered by Wang [Wang and Wang (2010)]: a yield-to-rupture failure transition is observed: the yield failure (called also ductile failure by other authors [Ide and White(1976,1977,1978)]shouldbeduetotheyieldingofentanglements,whereas at higherextensional strainrates, thespecimen breaksup in apurely elasticregime (withoutanyflow). Amongvisoelasticfluids,self-assembledtransientnetworks,thatconsistsofre- versibly cross-linked polymers in solutions constitute model systems for the physi- cist, with well defined structural properties and simple linear rheological behavior. The aim of this review is to embrace the current aspects of the phenomenology of transientnetwork’sfracturesinacompressivemanner.Wefirstpresentwhataretran- sient networks: systems and rheology. Second, we report on fracture’s experiments and computer simulations of transient networks in several configurations: shear ge- ometry,Hele-Shawcellsandextensionalgeometry.Thisalsoincludes,fractureprop- agationandtheextensionoftheconceptsofbrittlenessandductilityforviscoelastic fluids. Then, we describe the several theoretical approaches developed to describe cracknucleationintransientnetworks,andhowtheycomparetoexperiments,before toconclude. 2 Transientnetworks:systemsandrheology Self-assembledtransient(oftencalledphysical)networksareaclassofcomplexma- terials forming spontaneously 3D networks at thermodynamical equilibrium, that can transiently transmit elastic stresses over macroscopic distances. Transient self- 4 ChristianLIGOURE,SergeMORA assemblednetworksarecommoninbothnaturalandsyntheticmaterials.Theycon- sistofreversiblycross-linkedpolymersinwhichweakinteractionssuchashydrogen bonds, hydrophobic interactions, van der Waals forces, or electrostatic interactions are responsible for cross-links formation. Because of the transient character of the junctions, and so of the thermodynamics equilibrium state of these systems at rest, theydon’texhibitanyagingnoryieldstresscontrarytootherclassesofsoftout-of- thermodynamicequilibriumviscoelasticmaterialslikedenseparticulatesuspensions (colloidalglasses),orthermoreversiblegels[Larson(1999)].Oneofthemajorissue oftransientpolymernetworksistoconveyusefulrheologicalpropertiestosolutions, such as increased viscosity, gelation, shear-thinning or shear-thickening. They can be used as controlled drug delivery systems [Sutter et al (2007)], rheological reg- ulators in polymer blends [Kim et al (2004)], coatings, food, and cosmetics, or as matrix materials for tissue engineering [Kim and Mooney (1998)]. Self-assembled transient networks consist mostly of binary solutions of associative polymers, or ternary solutions of associative polymers and self-assembled surfactant aggregates even if supramolecular reversible networks formed by mixtures of small molecules associatingbydirectionalinteractionshasbeenalsoreported[Cordieretal(2008)]. Associating polymers are macromolecules with a part that is soluble in a selective solvent (often water), the so-called backbone or spacer to which two or more moi- etiesthatdonotdissolveinthissolvent,thestickers,areattached.Thestickersmay berandomlydistributedalongthebackboneormaybegroupedinblocks.theassocia- tionofsuchpolymersinsolutionhasbeenstudiedextensively,andmanyreviewscan befoundintheliterature,seeforexample[Larson(1999);WinnikandYekta(1997); Berretetal(1997);MengandRussel(2006);Chassenieuxetal(2011)].Notethatthe restrictive definition of transient networks that we propose, excludes simple entan- glednormalorlivingpolymersolutionsandmelts,whereentanglementsofpolymer chainsplaytheroleoftransientcross-linksandexhibitelasticyielding[Malkinand Petrie (1997); Boukany et al (2009)]. Telechelic polymers are often used as model linkers because they are architecturally simple: they consist of a long solvophilic mid-block with each end terminated by a solvophobic short chain (a sticker) [Se- menov et al (1995)]. The stickers incorporate into the solvophobic domains of the aggregates and can bridge them via their solvent-soluble mid-block resulting in an attractive interaction between the aggregates. . The nature and the morphologies of theaggregatesformingthenetwork’sjunctionsareversatile:(i)telechelicpolymers in binary solution that self-assemble spontaneously into non-interacting flower-like micelles at low concentration and form three dimensional networks above a perco- lationconcentration[Annableetal(1993);Sereroetal(2000);Wertenetal(2009); Seitzetal(2006)],(ii)surfactantvesicles[Leeetal(2005)],(iii)lyotropiclamellar phases [Warriner et al (1997)] (iv) wormlike micelles [Ramos and Ligoure (2007); Lodgeetal(2007);Nakaya-Yaegashietal(2008);Tixieretal(2010)],(v)spherical micelles[Appelletal(1998);Tixieretal(2010)],(vi)oil-in-water[BaggerJorgensen etal(1997);Filalietal(1999)]or(vii)water-in-oilmicroemulsiondroplets[Oden- waldetal(1995)],(viii)photocrosslinkablenano-emulsions[Helgesonetal(2012)]. Therheologyoftransientnetworksisdeterminedbytheamountandthelifetime of the bridges. In the simplest case when the bridging chains are flexible and un- tangled, each bridging chain contributes about 1 k T per unit volume to the elas- B FracturesinComplexFluids:theCaseofTransientNetworks 5 tic modulus G according to the theory of rubber elasticity [Green and Tobolsky 0 (1946); Tanaka and Edwards (1992e); Yamamoto (1956)]. The typical value of the shear modulus for these networks ranges between few Pa to several ten thousands Pa.Theelasticresponserelaxeswhenthesolvophobicblocksescapefromthecore. Oftentheescapeischaracterizedbyasinglerelaxationtimesothattheterminalre- laxation of the viscoelastic properties is characterized by a single Maxwell process wellseparatedfromthefasterinternalmodesthatcharacterizetheconformationalre- laxationofthechains[Annableetal(1993);Sereroetal(2000);Micheletal(2000); Filali et al (2001); Tabuteau et al (2009a); Hough and Ou-Yang (2006)]. Far above thepercolationconcentration,theviscoelasticrelaxationtimeτ isrelatedtotheav- erage lifetime of a connection [Green and Tobolsky (1946)] which in turn depends on the breakage probability of a cross-link. The average lifetime of bridge will de- pend on its chemical nature, the external conditions and the physical state of the cross-links. It can vary through few ms [Tixier et al (2010)], few seconds [Michel et al (2000); Filali et al (2001)], up to hours [Serero et al (2000); Skrzeszewska et al (2010); Seitz et al (2006)]. The simplicity of the linear viscoelastic behavior ofmostofself-assembledtransientnetworksisincontrastwiththeirhighlycomplex non-linearresponsethatcanvarywidely[Pellensetal(2004b)].Amongallsystems, the experimental model transient network consisting of oil-in-water microemulsion droplets reversibly linked by telechelic polymers [Filali et al (2001); Michel et al (2000)] is perhaps the unique one which exhibits the steady shear flow curve of a pureMaxwellfluidforboththeshearstressandthefirstnormalstressdifferenceun- tilitbreaks[Tabuteauetal(2009a)].Inmostothersystems,thesteadyshearviscosity exhibitsthreeflowregimes.AboveaNewtonianplateau(linearregime),theviscosity increasesconsiderably(shearthickening)priortotheonsetofshearthinningathigher shearrates[Annableetal(1993);Xuetal(1996);Otsubo(1999);BerretandSerero (2001);Pellensetal(2004a);Tripathietal(2006)].However,theshearthickeningre- gionisnotalwayspresent[Micheletal(2000);Tixieretal(2010);Tirtaatmajdaand Jenkins(1997);Mewisetal(2001);Skrzeszewskaetal(2010)].Alargenumberof constitutivetheoreticalmodelsarebasedonthetemporary-networkkineticmodelfor telechelic polymers network theory [Tanaka and Edwards (1992e)] by applying the original ideas formulated by Green and Tobolsky [Green and Tobolsky (1946)] and Yamamoto [Yamamoto (1956)] and have been developed to tentatively capture the mainfeaturesofnon-linearrheologicalpropertiesofthesenetworks[Marruccietal (1993);AhnandOsaki(1995);vandenBruleandHoogerbrugge(2000);Vaccaroand Marrucci(2000);Tripathietal(2006);Hernandez-Cifreetal(2003)]. 3 Fractureexperiments Several geometries have been considered to explore fracture mechanisms in tran- sientnetworks:elongationalflowsusingeitherextensionalrheometer[Tripathietal (2006)], pendant drop experiments [Tabuteau et al (2009a, 2011)], shear flows in rheometriccells[BerretandSerero(2001);Tabuteauetal(2009a);Tixieretal(2010); Skrzeszewska et al (2010)] or flows in Hele-Shaw cells [Zhao and Maher (1993); Igne´s-Mulloletal(1995);Vladetal(1999);MoraandManna(2010)]. 6 ChristianLIGOURE,SergeMORA 1200 1 mm 0 ms 900 ) a P ( 600 crack s 22 ms s e r z t s 300 y σ 47 ms yz σ N 0 0 0.3 0.6 0.9 1.2 shear rate γ˙ (s−1) 310 ms Fig. 1 From [Tabuteau et al (2009a)]: (Left) shear stress (σyz) and first normal stresses difference (σN=σzz σyy)versusshearrateforabridgedmicroemulsionwithashearmodulusG0=1210Paand − arelaxationτ=0.8s.Thecontinuouslinesarefits(Maxwellmodel).(Right)Developmentofafracture, occurringatthesurfaceofthesample,forashearrateequalto0.9s−1,correspondingtoacriticalfirst normalstressesdifferenceσN=1190Pa. 3.1 Shear-inducedfractures 3.1.1 Stationaryshearrate Whensubmittedtoaconstantshearrateγ˙,themeasuredshearstressσ of”brittle” xy transientnetworksfirstincreasessmoothlywiththeshearrate[Molinoetal(2000); BerretandSerero(2001);Tabuteauetal(2009a);Skrzeszewskaetal(2010);Tixier etal(2010)].However,aboveacriticalshearrateγ˙ τ 1,whereτ istherelaxation − ∼ time of the network, the flow curve exhibits a sharp discontinuity (Figure 1) and theviscositydecreasesabruptly.Belowthisvalue,thebranchoftheflowcurvecan be Newtonian and shear thickening [Berret and Serero (2001)], or only Newtonian [Molino et al (2000); Tabuteau et al (2009a); Skrzeszewska et al (2010)], or New- tonian and shear thinning [Tixier et al (2010)] depending on the experimental sys- tem under consideration. Note that for ”brittle ”transient networks, the first normal stresses difference N =σ σ drops suddenly for the same critical shear stress 1 xx yy − [Tabuteau et al (2009a)]. Authors of [Molino et al (2000)] were the first to suggest thatthesuddendropofthestressintheflowcurveofatransientnetworkisthesign ofafracturepropagation. However,thefirstunambiguousdemonstrationofshear-inducedfracturesintran- sientnetworkswasdonein[BerretandSerero(2001)],byusingaflowvisualization technique in a plate-plate transparent shearing cell. At low shear rate, the velocity FracturesinComplexFluids:theCaseofTransientNetworks 7 profileishomogeneous:thevelocitydecreaseslinearlyfromtherotatingwalltothe stationary one. Above the critical shear rate, the stationary velocity field within the gap of the cell exhibits a discontinuity, that defines a zone of fracture as the part of the fluid submitted to a high shear rate ( 10 times the applied rate). This has ∼ been confirmed by Skrzeszewska et al [Skrzeszewska et al (2010)] by Particle Im- age Velocimetry: the fracture zone has an irregular shape and is rather wide on the order of a few hundred micrometers. With increasing overall shear rate, the width of the fracture zone increases. The fracture zone can happen everywhere in the gap andisdifferentforeveryexperiment.Fornon-adhesivegels,thefracturezoneoccurs generally at one of the wall [Berret and Serero (2001)], and so appears as sliding, thatisobservedinotherclassesofcomplexfluidslikepastesorconcentratedemul- sions[Meekeretal(2004)],whereasforadhesivegels[Skrzeszewskaetal(2010)], orroughwallsurfaces[Tixieretal(2010)],thefractureoccursinthebulk.Adirect opticalobservationoftheshearfractures[Tabuteauetal(2009a)]showsthatabove thecriticalstress,cracksopenupallaroundthesampleandgrowrapidly.Itisworth notingthatthefracturesaretilted45 fromtheshearplane,perpendiculartothedi- ◦ rection of the maximum extension (Figure 1). Interestingly, for two very different systems[Tabuteauetal(2009a);Skrzeszewskaetal(2010)]thathaveperfectlyNew- tonianflowcurve,beforefractureoccurs,thefractureshearstressinthesteadystate flowcurvescalesasσ G ,whereG istheshearmodulusofthenetwork.Incon- xy 0 0 ∼ trasttosolids,herethefractureshealoverrapidlyaftertheshearrateisswitchedoff, andanewexperimentcanbeperformedafterafewminuteswithquantitativelythe samebehavior[Tabuteauetal(2009a);Skrzeszewskaetal(2010)]. Abovethecriticalfractureshearrate,strongfluctuationsoftheshearstresshave beenobserved[Sprakeletal(2009a);Tixieretal(2010);Ramosetal(2011)],thatcan leadtoanapparentshearplateau[Sprakeletal(2009a)]reminiscentofshear-banded flows observed in a wide variety of soft materials such as solutions of entangled wormlikemicelles,colloidalsuspensionsandentangledpolymersolutions[Fielding (2007);Olmsted(2008)].Suchstrongfluctuationsoftheshearstresshavealsobeen observed in solutions of entangled wormlike micelles at high shear rate and have beenassociatedalsowitharupture-likebehaviorasevidencedbyParticleTracking Velocimetry [Boukany and Wang (2007)]. By using a novel class of transient net- worksmadeofsurfactantmicellesoftunablemorphology[Tixieretal(2010)](from spheres to rods to flexible worms) linked by telechelic polymers, and coupling rhe- ologyandtime-resolvedstructuralmeasurements,RamosandLigoure[Ramosetal (2011)] clearly show that true shear-banding is not associated with strong fluctua- tionsoftheshearstress.Indeed,fluctuationsoftheshearstressareentirelycorrelated to the fluctuations of the degree of alignment of the micelles that can probe a frac- tureprocess.Sprakeletal[Sprakeletal(2009a)]arguethattheintermittentbehavior observed in the stress response is due to repeated microfracture-healing events in thematerial.Thecumulativedistributionofthetotalstressdrops∆σ duringafrac- turedisplaysacharacteristicpower-lawbehavior,P(>∆σ)∝δσ 0.85,withP the − stressprobabilitydistribution.Theexponentisclosetothevalueof0.8reportedfor true stick-slip motion [Feder and Feder (1991)]. Attempts to explain such scaling behaviorinvolvetheconceptofself-organizedcriticality. 8 ChristianLIGOURE,SergeMORA Fig.2 From[Sprakeletal(2009b)]:Transientshearstressresponseinashearstart-uprun.Bottompanel showsthecorrespondingevolutionofthevelocityprofile,inwhicheachlinerepresentsthelocalfluid velocity(vx(y,t))atagivenpositioninthegradientdirection.Snapshotsofthesimulationbox(flowfrom left-rightwithavelocitygradientfromtop-bottom)illustratethehomogeneousinitialconfiguration(left) andthefinalfracturedstate(right). Responsiveparticledynamicssimulations[Sprakeletal(2009b)]havealsoshown shear-induced fractures (Figure 2) in transient polymer networks. Moreover these simulations have revealed a transition from shear banding to fracture upon increas- ingtheoverallpolymerconcentration.andemphasizethedifficultytodefineanun- ambiguous criterion to discriminate between banding and fracture. In the literature, bandingisusuallydefinedassituationswherethevelocityprofileinthegradientdi- rectioniscontinuousbutkinked,whereasitisdiscontinuousattheplaneoffracture. Itisworthmentioningthanthetheissueofvelocitychangewithinthegapisinfact more complicated [Manneville (2008)] in addition to ”classic banding” coexistence of yielded and unyielded regions with finite and zero rates/velocities have been ob- served in systems like colloidal glasses [Besseling et al (2010)]. Unfortunately the spatialaccuracyistypicallylimitedtothemicrometerrangeandcannotallowtodis- tinguishbetweennarrowhighshearbandsandfractureplanes.Howevertheauthors of[Sprakeletal(2009b)]showthatadiscontinuityinthevariationofthefirstnormal stressesdifferenceN withtheshear-rateisanunambiguoussignatureofafracture, 1 since normal forces should be largely reduced as all connections between the two shearbandsacrossafractureplanearebroken.ThediscontinuityofN atthethresh- 1 old has been observed experimentally for fracturing transient networks [Tabuteau etal(2009a);Tixieretal(2010)],incontrastwithshear-bandingregimes[Tixieretal (2010)],whereN increaseswithγ˙asexpectedtheoretically[Spenleyetal(1993)]. 1 FracturesinComplexFluids:theCaseofTransientNetworks 9 3.1.2 Fractureatconstantappliedstress Anotherapproachtostudythefailureofgelsistoapplyaconstantstressandtofollow theresultingshearrateasafunctionoftime[Skrzeszewskaetal(2010)].Abovethe criticalfracturestressσ G ,fractureoccursimmediatelyasrevealedbyadramatic 0 ∼ increaseofthemeasuredsharerate.Belowthecriticalfractureshearstress,adelayed timeisobservedbeforefracturing,aphenomenonwelldocumentedinsolidmaterials [Zhurkov (1965); Santucci et al (2007)] and observed also in colloidal suspensions [Sprakeletal(2011);Divouxetal(2010)],wormlikemicelles[Olssonetal(2010)] andsoftelastomers[Bonnetal(1998)].Thedelayfracturetimet variessignificantly b fromoneexperimenttoanotheroneindicatingthestochasticnatureofthefracture mechanism.Withdecreasingstress,theaveragedelaytimeincreases<t >rapidly. b Severaltheoreticalinterpretationshavebeenproposed,thatwillbereviewedinSec- tion5).Theypredictdifferentdelayfracturetimes.However,theintrinsicstochastic natureofthefracturemechanismimpliesaverylargeuncertaintyof<t >thatdoes b notallowtoconcludedefinitivelyabouttherelevanttheory. Fig.3 From[Skrzeszewskaetal(2010)]:Delayedfractureofatransientpolymernetworkformedby telechelicpolypeptides,fordifferentappliedstresses.Afteracertainwaitingtimewhichvariesfromone experimenttoanother,thegelbreaks,leadingtoaveryrapidincreaseoftheoverallstrain. 3.2 FracturesinHele-Shawcells Fracture-like flow instabilities that arise when a fluid is injected into a Hele-Shaw cellfilledwithanaqueoussolutionoftelechelicpolymershasbeenreportedbysev- eral authors [Zhao and Maher (1993); Igne´s-Mullol et al (1995); Vlad et al (1999); 10 ChristianLIGOURE,SergeMORA Fig.4 From[ZhaoandMaher(1993)]:Fourtypicalpatternsofa2.5%solutionofhexadecylend-capped polymersofmolecularweight50700atinjectionrates(a)Q=1.0mL/min,(b)Q=1.0mL/min,(c)Q=5.0 mL/min,and(d)Q=20mL/min.Thecrossoverfromtheviscous-fingeringpatterntothefracturingpattern isseenin(a)and(b). MoraandManna(2010)].ZhaoandMaher[ZhaoandMaher(1993)]showedusing aradialHele-Shawcell,thatfortransientnetworksofassociativepolymers,thereex- istsathresholdinjectionrate,belowwhichthepatterninstabilityistypicallyviscous fingering (Saffman-Taylor instability) [Bensimon et al (1986)], and beyond which, thepatternsresemblefracturepatternsobservedinbrittlematerials(Figure4).Note that analogous fracture patterns have been also observed in other classes of com- plexfluidslikeclaysuspensions[Lemaireetal(1991)]orlyotropiclamellarphases [Greffieretal(1998)].Thedifferencebetweenafingeringpatternandafracturepat- tern is drastic and can be quantified by calculating the mass fractal dimension of a givenpattern:itdropsdrasticallyfrom 1.70to 1.0nearthetransitionthreshold. ∼ ∼ Interestingly, the fingering/fracture transition is not observed for the corresponding entangledhomopolymerssolutions,indicatingthatthefingering-fracturingtransition isadirectmanifestationofanassociating-networkeffect.Acharacteristic,Deborah number D =τ /τ (τQ)/(b2L ) can be defined, where τ =1/γ˙ is the e thin f cell thin thin ∼ inverseoftheshearthinningrateofthetransientnetworkandnotitsrelaxationtime τ, Q is the injection rate, b the thickness of the cell and L , some characteristic cell lengthscaleoftheradialcell.Thetransitionfromfingeringtofracture-likebehavior

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.