Fractal Geometry Fractal Geometry Mathematical Foundations and Applications Third Edition Kenneth Falconer UniversityofStAndrews,UK Thiseditionfirstpublished2014 ©2014JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,United Kingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionof thepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrand namesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregistered trademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendor mentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisherisnot engagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefor damagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofa competentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationDataappliedfor. AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN:978-1-119-94239-9 Setin10/12ptTimesbyLaserwordsPrivateLimited,Chennai,India 12014 Contents Prefacetothefirstedition ix Prefacetothesecondedition xiii Prefacetothethirdedition xv Coursesuggestions xvii Introduction xix PARTI FOUNDATIONS 1 1 Mathematicalbackground 3 1.1 Basicsettheory 3 1.2 Functionsandlimits 7 1.3 Measuresandmassdistributions 11 1.4 Notesonprobabilitytheory 17 1.5 Notesandreferences 24 Exercises 24 2 Box-countingdimension 27 2.1 Box-countingdimensions 27 2.2 Propertiesandproblemsofbox-countingdimension 34 *2.3 Modifiedbox-countingdimensions 38 2.4 Someotherdefinitionsofdimension 40 2.5 Notesandreferences 41 Exercises 42 3 Hausdorffandpackingmeasuresanddimensions 44 3.1 Hausdorffmeasure 44 3.2 Hausdorffdimension 47 3.3 CalculationofHausdorffdimension–simpleexamples 51 3.4 EquivalentdefinitionsofHausdorffdimension 53 vi CONTENTS *3.5 Packingmeasureanddimensions 54 *3.6 Finerdefinitionsofdimension 57 *3.7 Dimensionprints 58 *3.8 Porosity 60 3.9 Notesandreferences 63 Exercises 64 4 Techniquesforcalculatingdimensions 66 4.1 Basicmethods 66 4.2 Subsetsoffinitemeasure 75 4.3 Potentialtheoreticmethods 77 *4.4 Fouriertransformmethods 80 4.5 Notesandreferences 81 Exercises 81 5 Localstructureoffractals 83 5.1 Densities 84 5.2 Structureof1-sets 87 5.3 Tangentstos-sets 92 5.4 Notesandreferences 96 Exercises 96 6 Projectionsoffractals 98 6.1 Projectionsofarbitrarysets 98 6.2 Projectionsofs-setsofintegraldimension 101 6.3 Projectionsofarbitrarysetsofintegraldimension 103 6.4 Notesandreferences 105 Exercises 106 7 Productsoffractals 108 7.1 Productformulae 108 7.2 Notesandreferences 116 Exercises 116 8 Intersectionsoffractals 118 8.1 Intersectionformulaeforfractals 119 *8.2 Setswithlargeintersection 122 8.3 Notesandreferences 128 Exercises 128 PARTII APPLICATIONSANDEXAMPLES 131 9 Iteratedfunctionsystems–self-similarandself-affinesets 133 9.1 Iteratedfunctionsystems 133 9.2 Dimensionsofself-similarsets 139 CONTENTS vii 9.3 Somevariations 143 9.4 Self-affinesets 149 9.5 Applicationstoencodingimages 155 *9.6 Zetafunctionsandcomplexdimensions 158 9.7 Notesandreferences 167 Exercises 167 10 Examplesfromnumbertheory 169 10.1 Distributionofdigitsofnumbers 169 10.2 Continuedfractions 171 10.3 Diophantineapproximation 172 10.4 Notesandreferences 176 Exercises 176 11 Graphsoffunctions 178 11.1 Dimensionsofgraphs 178 *11.2 Autocorrelationoffractalfunctions 188 11.3 Notesandreferences 192 Exercises 192 12 Examplesfrompuremathematics 195 12.1 DualityandtheKakeyaproblem 195 12.2 Vitushkin’sconjecture 198 12.3 Convexfunctions 200 12.4 Fractalgroupsandrings 201 12.5 Notesandreferences 204 Exercises 204 13 Dynamicalsystems 206 13.1 Repellersanditeratedfunctionsystems 208 13.2 Thelogisticmap 209 13.3 Stretchingandfoldingtransformations 213 13.4 Thesolenoid 217 13.5 Continuousdynamicalsystems 220 *13.6 Smalldivisortheory 225 *13.7 Lyapunovexponentsandentropies 228 13.8 Notesandreferences 231 Exercises 232 14 Iterationofcomplexfunctions–JuliasetsandtheMandelbrotset 235 14.1 GeneraltheoryofJuliasets 235 14.2 Quadraticfunctions–theMandelbrotset 243 14.3 Juliasetsofquadraticfunctions 248 14.4 Characterisationofquasi-circlesbydimension 256 14.5 Newton’smethodforsolvingpolynomialequations 258 viii CONTENTS 14.6 Notesandreferences 262 Exercises 262 15 Randomfractals 265 15.1 ArandomCantorset 266 15.2 Fractalpercolation 272 15.3 Notesandreferences 277 Exercises 277 16 BrownianmotionandBrowniansurfaces 279 16.1 Brownianmotioninℝ 279 16.2 Brownianmotioninℝn 285 16.3 FractionalBrownianmotion 289 16.4 FractionalBrowniansurfaces 294 16.5 Lévystableprocesses 296 16.6 Notesandreferences 299 Exercises 299 17 Multifractalmeasures 301 17.1 Coarsemultifractalanalysis 302 17.2 Finemultifractalanalysis 307 17.3 Self-similarmultifractals 310 17.4 Notesandreferences 320 Exercises 320 18 Physicalapplications 323 18.1 Fractalfingering 325 18.2 Singularitiesofelectrostaticandgravitationalpotentials 330 18.3 Fluiddynamicsandturbulence 332 18.4 Fractalantennas 334 18.5 Fractalsinfinance 336 18.6 Notesandreferences 340 Exercises 341 References 342 Index 357
Description: