ebook img

FPGA-BASED IMPLEMENTATION OF ELECTRONIC ABACUS USING ALTERA DE2 BOARD AZMI ... PDF

42 Pages·2017·1.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview FPGA-BASED IMPLEMENTATION OF ELECTRONIC ABACUS USING ALTERA DE2 BOARD AZMI ...

FPGA-BASED IMPLEMENTATION OF ELECTRONIC ABACUS USING ALTERA DE2 BOARD AZMI BIN SIDEK A project report submitted in partial fulfilment of the requirement for the award of the Degree of Master of Electrical Engineering Faculty of Electrical and Electronic Engineering Universiti Tun Hussein Onn Malaysia JULY 2017 iii For my beloved mother, my dearest wife and children. iv ACKNOWLEDGEMENT Praise to Allah upon His blessing that granted me the guidance, strength and knowledge to complete this project. Special appreciation to my supervisor, Assoc. Prof. Dr. Abd. Kadir bin Mahamad for the support and guidance throughout the duration of my study. Not forgetting my fellow colleagues who gave me the friendly environment to work within. A very warm gratitude to my wife, children and family that gives me their fullest support and understanding throughout the years upon completion of my study. Last but not least, to everyone involved directly or indirectlytowards the compilation of this thesis. v ABSTRACT The development of electronic abacus is to integrate the use of abacus along with electronic devices which offers better visualisation of the abacus operations. The main focus of this application is to assist the primary school students‟ in validating a fundamental arithmetic operation by using an abacus. The electronic abacus is developed by integrating an abacus, abacus decoder module and FPGA-based processor. DE2 115 is chosen as the development module and VHDL as main programming language. The arithmetic algorithm developed for the electronic abacus is limited to the computational of whole numbers only. The electronic abacus is operational in two modes, display mode and arithmetic mode. In the display mode, the abacus beads position at column 1 until column 7is displayed as numerical representation on the LCD screen. A computation of arithmetic operations with less than three operatorsare available in the arithmetic modewith the capability ofdisplaying the negative numerical and infinite value. The implementation of integrating an abacus with electronic devices will hopefullycontribute in the development of more lively and interesting teaching approach by using this ancient apparatus. vi ABSTRAK Penghasilan abakus elektronik yang menggabungkan abakus bersama peranti elektronikdapatmenggambarkan operasi aritmetik abakus yang lebih jelas kepada penggunanya. Digunakan sebagai alat bantuan bagi pelajar sekolah di peringkat sekolah rendah dan sebagai pengesah operasi aritmetik bagi abakus. Abakus elektronik dihasilkan dengan menggabungkan abakus, modul pengekodan serta pemproses berasaskan FPGA. DE2 115 dipilih sebagai modul pembangunan dan VHDL sebagai bahasa pengaturcaraan utama. Algoritma aritmetik yang dibangunkan bagi abakus elektronik ini, bagaimanapun terhad kepada pengiraan untuk nomborbulat sahaja. Abakus elektronik beroperasi dalam dua mod, iaitu mod paparan dan mod aritmetik. Pada mod paparan, pengguna dapat melihat perwakilan nombor pada paparan LCD yang mewakili kedudukan manik abakus pada lajur pertama hingga lajur ke 7. Selain itu, pengiraan operasi aritmetik bagi kurang dari tiga pengoperasi boleh dilaksanakan dalam mod aritmetik dengan keupayaan paparan nilai negatif dan infiniti. Integrasi di antara peranti elektronik dengan abakus diharapkan dapat membangunkanpenghasilan kaedah pembelajaran menggunakan abakus yang lebih menarik dan bertenaga. vii TABLE OF CONTENTS ACKNOWLEDGEMENT iv ABSTRACT v ABSTRAK vi LIST OF TABLES x LIST OF FIGURES xi LIST OF SYMBOLS AND ABBREVIATIONS xiv LIST OF APPENDICES xv CHAPTER 1 1 INTRODUCTION 1 1.1 Introduction 1 1.2 Problem Statement 2 1.3 Objectives 2 1.4 Project Scope 3 1.5 The Organisation of Thesis 3 CHAPTER 2 5 LITERATURE REVIEW 5 2.1 Introduction 5 2.2 Abacus Historical Review 5 2.3 Abacus Architecture 8 2.4 Abacus Arithmetic Operation 9 2.4.1 Addition 10 viii 2.4.2 Subtraction 12 2.4.3 Multiplication 12 2.4.4 Division 14 2.5 Previous Related Works 16 2.6 Summary of Previous Related Works 18 CHAPTER 3 20 METHODOLOGY 20 3.1 Introduction 20 3.2 Project Activities 20 3.3 Hardware Design 21 3.4 Abacus Numerical Display and Arithmetic Algorithm 27 3.5 Experimental Configuration 30 CHAPTER 4 33 DATA ANALYSIS AND RESULTS 33 4.1 Introduction 33 4.2 Bead Sensor Circuitry and DE2 Interface Board Evaluation 33 4.3 Bead Sensor Decoder 37 4.4 Binary to ASCII Conversion 38 4.5 LCD Controller 39 4.6 Arithmetic Algorithm 40 4.6.1 Two Variables Arithmetic Operation 41 4.6.2 Three Variables Arithmetic Operation 42 4.6.2.1 Combinations of Additional Operators 43 4.6.2.2 Combinations of Subtraction Operators 46 4.6.2.3 Combinations of Multiplication Operators 47 4.6.2.4 Combinations of Division Operators 47 4.7 VHDL Evaluations 49 ix 4.8 Complete System Evaluations 51 4.8.1 Display Mode 53 4.8.2 Arithmetic Mode 53 4.8.2.1 Two Variables Mode 54 4.8.2.2 Three Variables Mode 57 CHAPTER 5 67 DISCUSSION AND CONCLUSIONS 67 5.1 Introduction 67 5.2 Discussion 67 5.3 Conclusions 70 5.4 Future Works 71 REFERENCES Error! Bookmark not defined. APPENDIX A 76 APPENDIX B 78 APPENDIX C 80 APPENDIX D 81 APPENDIX E 82 APPENDIX F 106 x LIST OF TABLES 2.1 Summary of previous related works 17 4.1 Binary logical levels 32 4.2 Bead position binary representation with respect 33 to numeral value 4.3 Experimental result for abacus column 7 33 4.4 Experimental result for abacus column 6 34 4.5 Experimental result for abacus column 5 34 4.6 Experimental result for abacus column 4 34 4.7 Experimental result for abacus column 3 34 4.8 Experimental result for abacus column 2 35 4.9 Experimental result for abacus column 1 35 4.10 Combinational of addition operators 42 4.11 Combinational of subtraction operators 44 4.12 Combinational of multiplication operators 45 4.13 Combinational of division operators 46 4.14 DE2 hardware and pin allocations 49 xi LIST OF FIGURES 2.1 Salamis Tablet 6 2.2 Replica of Roman Abacus 6 2.3 Chinese abacus (2/5 suan pan) 7 2.4 Japanese abacus (soroban) 8 2.5 The evolution of counting devices 8 2.6 Japanese abacus construction and notations 9 2.7 Japanese abacus beads position and numerical 9 value 2.8 Additional Operation 10 2.9 Subtraction Operation 12 2.10 Multiplication Operation 14 2.11 Division Operation 15 3.1 Project flowchart 20 3.2 Abacus model used in hardware design 21 3.3 Abacus modification 21 3.4 DE2Interface board 22 3.5 Bead sensor board elevation 22 3.6 Multistage board configuration with respect to 23 abacus bead 3.7 Proximity sensor grid configuration on bead 23 sensor board 3.8 Proximity sensorcontrol circuitry 24 3.9 Configuration of alternate column triggering 25 3.10 Configuration of I2C interconnection 26 3.11 Flowchart for display and two variables 27 arithmetic mode

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.