ebook img

Fourier Integrals in Classical Analysis PDF

349 Pages·2017·1.827 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fourier Integrals in Classical Analysis

CAMBRIDGE TRACTS IN MATHEMATICS GeneralEditors B. BOLLOBA´ S, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO 210FourierIntegralsinClassicalAnalysis,SecondEdition Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:06:07, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 CAMBRIDGE TRACTS IN MATHEMATICS GENERAL EDITORS B. BOLLOBA´S, W. FULTON, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO Acompletelistofbooksintheseriescanbefoundatwww.cambridge.org/mathematics. Recenttitlesincludethefollowing: 176.TheMonsterGroupandMajoranaInvolutions.ByA.A.IVANOV 177.AHigher-DimensionalSieveMethod.ByH.G.DIAMOND,H.HALBERSTAM,and W.F.GALWAY 178.AnalysisinPositiveCharacteristic.ByA.N.KOCHUBEI 179.DynamicsofLinearOperators.ByF.BAYARTandE´.MATHERON 180.SyntheticGeometryofManifolds.ByA.KOCK 181.TotallyPositiveMatrices.ByA.PINKUS 182.NonlinearMarkovProcessesandKineticEquations.ByV.N.KOLOKOLTSOV 183.PeriodDomainsoverFiniteandp-adicFields.ByJ.-F.DAT,S.ORLIK,andM.RAPOPORT 184.AlgebraicTheories.ByJ.ADA´MEK,J.ROSICKY´,andE.M.VITALE 185.RigidityinHigherRankAbelianGroupActionsI:IntroductionandCocycleProblem. ByA.KATOKandV.NIT¸ICA˘ 186.Dimensions,Embeddings,andAttractors.ByJ.C.ROBINSON 187.Convexity:AnAnalyticViewpoint.ByB.SIMON 188.ModernApproachestotheInvariantSubspaceProblem.ByI.CHALENDARand J.R.PARTINGTON 189.NonlinearPerron–FrobeniusTheory.ByB.LEMMENSandR.NUSSBAUM 190.JordanStructuresinGeometryandAnalysis.ByC.-H.CHU 191.MalliavinCalculusforLe´vyProcessesandInfinite-DimensionalBrownianMotion. ByH.OSSWALD 192.NormalApproximationswithMalliavinCalculus.ByI.NOURDINandG.PECCATI 193.DistributionModuloOneandDiophantineApproximation.ByY.BUGEAUD 194.MathematicsofTwo-DimensionalTurbulence.ByS.KUKSINandA.SHIRIKYAN 195.AUniversalConstructionforGroupsActingFreelyonRealTrees.ByI.CHISWELLand T.MU¨LLER 196.TheTheoryofHardy’sZ-Function.ByA.IVIC´ 197.InducedRepresentationsofLocallyCompactGroups.ByE.KANIUTHandK.F.TAYLOR 198.TopicsinCriticalPointTheory.ByK.PERERAandM.SCHECHTER 199.CombinatoricsofMinusculeRepresentations.ByR.M.GREEN 200.SingularitiesoftheMinimalModelProgram.ByJ.KOLLA´R 201.CoherenceinThree-DimensionalCategoryTheory.ByN.GURSKI 202.CanonicalRamseyTheoryonPolishSpaces.ByV.KANOVEI,M.SABOK,and J.ZAPLETAL 203.APrimerontheDirichletSpace.ByO.EL-FALLAH,K.KELLAY,J.MASHREGHI,and T.RANSFORD 204.GroupCohomologyandAlgebraicCycles.ByB.TOTARO 205.RidgeFunctions.ByA.PINKUS 206.ProbabilityonRealLieAlgebras.ByU.FRANZandN.PRIVAULT 207.AuxiliaryPolynomialsinNumberTheory.ByD.MASSER 208.RepresentationsofElementaryAbelianp-GroupsandVectorBundles.ByD.J.BENSON 209.Non-homogeneousRandomWalks.ByM.MENSHIKOV,S.POPOV,andA.WADE 210.FourierIntegralsinClassicalAnalysis(SecondEdition).ByCHRISTOPHERD.SOGGE Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:06:07, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 Fourier Integrals in Classical Analysis Second Edition CHRISTOPHER D. SOGGE TheJohnsHopkinsUniversity Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:06:07, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 4843/24,2ndFloor,AnsariRoad,Daryaganj,Delhi–110002,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107120075 DOI:10.1017/9781316341186 Firstedition(cid:2)c CambridgeUniversityPress1993 Secondedition(cid:2)c ChristopherD.Sogge2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished1993 Secondedition2017 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Sogge,ChristopherD.(ChristopherDonald),1960– Title:Fourierintegralsinclassicalanalysis/ChristopherD.Sogge, TheJohnsHopkinsUniversity. Description:Secondedition.|Cambridge:CambridgeUniversityPress,2017.| Series:Cambridgetractsinmathematics;210| Includesbibliographicalreferencesandindex. Identifiers:LCCN2017004380|ISBN9781107120075(hardback:alk.paper) Subjects:LCSH:Fourierseries.|Fourierintegraloperators.|Fourieranalysis. Classification:LCCQA404.S642017|DDC515/.723–dc23 LCrecordavailableathttps://lccn.loc.gov/2017004380 ISBN978-1-107-12007-5Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyInternetWebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchWebsitesis,orwillremain, accurateorappropriate. Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:06:07, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 Tomyfamily Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:12:53, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:12:53, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 Contents PrefacetotheSecondEdition page xi PrefacetotheFirstEdition xiii 0 Background 1 0.1 FourierTransform 1 0.2 BasicRealVariableTheory 9 0.3 FractionalIntegrationandSobolevEmbeddingTheorems 22 0.4 WaveFrontSetsandtheCotangentBundle 30 0.5 OscillatoryIntegrals 37 Notes 41 1 StationaryPhase 42 1.1 StationaryPhaseEstimates 42 1.2 FourierTransformofSurface-carriedMeasures 51 Notes 56 2 Non-homogeneousOscillatoryIntegralOperators 57 2.1 Non-degenerateOscillatoryIntegralOperators 58 2.2 OscillatoryIntegralOperatorsRelatedtothe RestrictionTheorem 60 2.3 RieszMeansinRn 70 2.4 NikodymMaximalFunctionsandMaximalRiesz MeansinR2 76 Notes 96 3 Pseudo-differentialOperators 97 3.1 SomeBasics 97 3.2 EquivalenceofPhaseFunctions 104 3.3 Self-adjointEllipticPseudo-differentialOperators onCompactManifolds 110 Notes 115 Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:16:20, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 viii Contents 4 TheHalf-waveOperatorandFunctionsof Pseudo-differentialOperators 116 4.1 TheHalf-waveOperator 117 4.2 TheSharpWeylFormula 126 4.3 SmoothFunctionsofPseudo-differentialOperators 133 Notes 135 5 LpEstimatesofEigenfunctions 137 5.1 TheDiscreteL2 RestrictionTheorem 138 5.2 EstimatesforRieszMeans 151 5.3 MoreGeneralMultiplierTheorems 155 Notes 160 6 FourierIntegralOperators 162 6.1 LagrangianDistributions 162 6.2 RegularityProperties 170 6.3 SphericalMaximalTheorems:Take1 187 Notes 194 7 PropagationofSingularitiesandRefinedEstimates 195 7.1 WaveFrontSetsRedux 195 7.2 PropagationofSingularities 199 7.3 ImprovedSup-normEstimatesofEigenfunctions 204 7.4 ImprovedSpectralAsymptotics 216 Notes 232 8 LocalSmoothingofFourierIntegralOperators 233 8.1 LocalSmoothinginTwoDimensionsandVariable CoefficientNikodymMaximalTheorems 234 8.2 LocalSmoothinginHigherDimensions 253 8.3 SphericalMaximalTheoremsRevisited 263 Notes 266 9 Kakeya-typeMaximalOperators 268 9.1 TheKakeyaMaximalOperatorandtheKakeyaProblem 268 9.2 UniversalBoundsforKakeya-typeMaximalOperators 278 9.3 NegativeResultsinCurvedSpaces 285 9.4 Wolff’sBoundsforKakeya-typeMaximalOperators 294 9.5 TheFourierRestrictionProblemandtheKakeyaProblem 310 Notes 314 Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:16:20, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186 Contents ix Appendix:LagrangianSubspacesofT∗Rn 317 References 319 IndexofNotation 331 Index 333 Downloaded from https:/www.cambridge.org/core. Boston University Theology Library, on 29 May 2017 at 02:16:20, subject to the Cambridge Core terms of use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/9781316341186

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.