ABSTRACT FOURIER ANALYSIS ON SU(2) by Tyler Leaser November, 2012 Chair: Dr. Chal Benson Major Department: Mathematics The set SU(2) of 2x2 unitary matrices with determinant one forms a compact non- abelian Lie group diffeomorphic to the three dimensional sphere. This thesis surveys general theory concerning analysis on compact Lie groups and applies this in the setting of SU(2). Our principal reference is J. Faraut’s book Analysis on Lie Groups. Fundamental results in representation theory with compact Lie groups include the Peter-Weyl Theorem, Plancherel Theorem and a criterion for uniform convergence of Fourier series. On SU(2) we give explicit constructions for Haar measure and all irreducible unitary representations. For purposes of motivation and comparison we also consider analysis on U(1), the unit circle in the complex plane. In this context, the general theory specializes to yield classical results on Fourier series with periodic functions and the heat equation in one dimension. We discuss convergence behavior of Fourier series on SU(2) and show that Cauchy problem for the heat equation with continuous boundary data admits a unique solution. FOURIER ANALYSIS ON SU(2) A Thesis Presented to The Faculty of the Department of Mathematics East Carolina University In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Tyler Leaser November, 2012 Copyright 2012, Tyler Leaser FOURIER ANALYSIS ON SU(2) by Tyler Leaser APPROVED BY: DIRECTOR OF THESIS: Dr. Chal Benson COMMITTEE MEMBER: Dr. Chris Jantzen COMMITTEE MEMBER: Dr. Imre Patyi COMMITTEE MEMBER: Dr. Gail Ratcliff CHAIR OF THE DEPARTMENT OF MATHEMATICS: Dr. Johannes Hattingh DEAN OF THE GRADUATE SCHOOL: Dr. Paul Gemperline ACKNOWLEDGEMENTS Apart from the efforts of myself, the success of any project depends largely on the encouragement and guidelines of many others. I take this opportunity to express my gratitude to the people who have been instrumental in the successful completion of this project. I would like to show my greatest appreciation to Prof. Chal Benson. I can’t say thank you enough for his tremendous support and help. I feel motivated and encouragedeverytimeIattendhismeeting. Withouthisencouragementandguidance this project would not have materialized. The guidance and support received from all the members who contributed and who are contributing to this project, was vital for the success of the project. I am grateful for their constant support and help. TABLE OF CONTENTS 1 Introduction to Matrix Groups . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Matrix Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Adjoint Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Haar Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Compact Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 Schur Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 The Peter-Weyl Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 The Plancherel Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Absolute and Uniform Convergence of Fourier Series . . . . . . . . . . 24 2.5 Fourier Series for Central Functions . . . . . . . . . . . . . . . . . . . 27 2.6 Laplace Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Uniform Continuity on Compact Groups . . . . . . . . . . . . . . . . 38 3 Analysis on U(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1 Determination of U(cid:100)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Classical Fourier Series: L2-theory . . . . . . . . . . . . . . . . . . . . 43 3.3 Classical Fourier Series: Point-wise Convergence . . . . . . . . . . . . 44 3.4 Abel Summability on U(1) . . . . . . . . . . . . . . . . . . . . . . . . 45 4 Analysis on SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.1 Haar Measure on SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Central Functions on SU(2) . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Irreducible Representations of SU(2) . . . . . . . . . . . . . . . . . . 60 4.4 An Alternate Model for π . . . . . . . . . . . . . . . . . . . . . . . . 78 m 4.5 Reproducing Kernels for P and V . . . . . . . . . . . . . . . . . . 82 m m 4.6 Laplace Operator on SU(2) . . . . . . . . . . . . . . . . . . . . . . . 84 4.7 Fourier Series on SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.8 Poisson Kernel on SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.9 Abel Summability of Fourier Series on SU(2) . . . . . . . . . . . . . . 98 5 Heat Equation on U(1) and SU(2) . . . . . . . . . . . . . . . . . . . . . 102 5.1 Heat Equation on U(1) . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2 Heat Equation on SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 CHAPTER 1: Introduction to Matrix Groups 1.1 Matrix Groups Let M(n,K) be the set of n × n matrices with entries in K = R or K = C. Note that M(n,K) is a vector space over K in the usual way, isomorphic to Kn2. We equip M(n,K) with its usual vector topology. The subset of invertible matrices in M(n,K) formsagroupundermatrixmultiplication,knownasthegenerallineargroup,denoted GL(n,K). Another way to define the general linear group is GL(n,K) = {X ∈ M(n,K) : det(X) (cid:54)= 0}. As GL(n,K) = det−1(K−{0}) and det : M(n,K) → K is continuous, GL(n,K) is an open subset of M(n,K). Definition 1.1. A closed subgroup of GL(n,K) is called a linear Lie group. There are a number of classic examples. • SL(n,K) = {g ∈ GL(n,K) : det(g) = 1} = Ker(det : GL(n,K) → K) is called the special linear group. • O(n) = {g ∈ GL(n,R) : (cid:107)gx(cid:107) = (cid:107)x(cid:107), for all x ∈ Rn} is the orthogonal group and SO(n) = {g ∈ O(n) : det(g) = 1} = O(n)∩SL(n,R) the special orthogonal group. As is well known g ∈ O(n) if and only if g(cid:124)g = I. • U(n) = {g ∈ GL(n,C) : g∗g = I} is the unitary group and SU(n) = {g ∈ U(n) : det(g) = 1} the special unitary group. An important fact about linear Lie groups is that each such group G ⊂ GL(n,K) is a smooth sub-manifold of M(n,K) [2, Corollary 3.3.5]. This will allow us to apply calculus on manifolds to linear Lie groups. We can extend the usual exponential map to a matrix valued function of a matrix variable. 2 Definition 1.2. The exponential of a matrix X ∈ M(n,K) is the sum of the series (cid:88)∞ Xk exp(X) = . k! k=0 Here we have that Xk is simply X matrix multiplied by itself k times with the usual convention that X0 = I. Since matrices do not usually commute, we do not have, in general, that exp(X +Y) = exp(X)exp(Y). However exp(X)exp(Y) = exp(X +Y) provided XY = YX; (1.1) see [2, Proposition 2.2.3]. Indeed, if X,Y commute we can write ∞ ∞ (cid:88)(cid:88) 1 exp(X)exp(Y) = XkY(cid:96) k!(cid:96)! k=0 (cid:96)=0 (cid:32) (cid:33) ∞ ∞ (cid:88) 1 (cid:88) m! = XkY(cid:96) m! k!(cid:96)! (cid:96)=0 k+(cid:96)=m ∞ (cid:88) 1 = (X +Y)m m! m=0 = exp(X +Y). We will also need the following important relation later. Lemma 1.3. For X ∈ M(n,K) we have det(exp(X)) = etr(X).