Table Of ContentFoundations of Quantitative
Finance
Chapman & Hall/CRC Financial Mathematics
Series
Aims and scope:
The field of financial mathematics forms an ever-expanding slice of the financial sector. This series aims
to capture new developments and summarize what is known over the whole spectrum of this field. It
will include a broad range of textbooks, reference works and handbooks that are meant to appeal to both
academics and practitioners. The inclusion of numerical code and concrete real-world examples is highly
encouraged.
Rama Cont
Series Editors:
Department of Mathematics
M.A.H. Dempster
Imperial College, UK
Centre for Financial Research
Department of Pure Mathematics
and Statistics
University of Cambridge, UK
Robert A. Jarrow
Dilip B. Madan
Lynch Professor of Investment Management
Robert H. Smith School of Business
University of Maryland, USA Johnson Graduate School of Management
Cornell University, USA
Commodities: Fundamental Theory of Futures, Forwards, and
Derivatives Pricing, Second Edition
M.A.H. Dempster, Ke Tang
Foundations of Quantitative Finance
Book I: Measure Spaces and Measurable Functions
Robert R. Reitano
Introducing Financial Mathematics: Theory, Binomial Models, and
Applications
Mladen Victor Wickerhauser
Foundations of Quantitative Finance
Book II: Probability Spaces and Random Variables
Robert R. Reitano
Financial Mathematics: From Discrete to Continuous Time
Kevin J. Hastings
Financial Mathematics : A Comprehensive Treatment in Discrete Time
Giuseppe Campolieti and Roman N. Makarov
For more information about this series please visit: https://www.crcpress.com/Chapman-HallCRC-Financial-Mathe-
matics-Series/book-series/CHFINANCMTH
Foundations of Quantitative
Finance
Book II: Probability Spaces and
Random Variables
Robert R. Reitano
Brandeis International Business School
Waltham, MA
First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742
and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN
CRC Press is an imprint of Taylor & Francis Group, LLC
© 2023 Robert R. Reitano
Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please
write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.
For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk
Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.
Library of Congress Cataloging-in-Publication Data
Names: Reitano, Robert R., 1950- author.
Title: Foundations of quantitative finance. Book II, Probability spaces and
random variables / Robert R. Reitano.
Other titles: Probability spaces and random variables
Description: First edition. | Boca Raton : CRC Press, 2023. | Includes
bibliographical references and index.
Identifiers: LCCN 2022025709 | ISBN 9781032197180 (hardback) | ISBN
9781032197173 (paperback) | ISBN 9781003260547 (ebook)
Subjects: LCSH: Finance--Mathematical models. | Probabilities. | Random
variables.
Classification: LCC HG106 .R448 2023 | DDC 332.01/5195--dc23/eng/20220601
LC record available at https://lccn.loc.gov/2022025709
ISBN: 978-1-032-19718-0 (hbk)
ISBN: 978-1-032-19717-3 (pbk)
ISBN: 978-1-003-26054-7 (ebk)
DOI: 10.1201/9781003260547
Typeset in CMR10
by KnowledgeWorks Global Ltd.
Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.
to Dorothy and Domenic
Contents
Preface xi
Author xiii
Introduction xv
1 Probability Spaces 1
1.1 Probability Theory: A Very Brief History . . . . . . . . . . . . . . . . . . . 1
1.2 A Finite Measure Space with a “Story” . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Bond Loss Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Some Probability Measures on R . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Measures from Discrete Probability Theory . . . . . . . . . . . . . . 11
1.3.2 Measures from Continuous Probability Theory . . . . . . . . . . . . 16
1.3.3 More General Probability Measures on R . . . . . . . . . . . . . . . 20
1.4 Independent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1 Independent Classes and Associated Sigma Algebras . . . . . . . . . 24
1.5 Conditional Probability Measures . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.1 Law of Total Probability . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Limit Theorems on Measurable Sets 35
2.1 Introduction to Limit Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 The Borel-Cantelli Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Kolmogorov’s Zero-One Law . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 Random Variables and Distribution Functions 47
3.1 Introduction and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1 Bond Loss Example (Continued) . . . . . . . . . . . . . . . . . . . . 50
3.2 “Inverse” of a Distribution Function . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Properties of F∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 The Function F∗∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 Random Vectors and Joint Distribution Functions . . . . . . . . . . . . . . 62
3.3.1 Marginal Distribution Functions . . . . . . . . . . . . . . . . . . . . 65
3.3.2 Conditional Distribution Functions . . . . . . . . . . . . . . . . . . . 67
3.4 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Sigma Algebras Generated by R.V.s . . . . . . . . . . . . . . . . . . 70
3.4.2 Independent Random Variables and Vectors . . . . . . . . . . . . . . 71
3.4.3 Distribution Functions of Independent R.V.s . . . . . . . . . . . . . 74
3.4.4 Independence and Transformations . . . . . . . . . . . . . . . . . . . 75
vii
viii Contents
4 Probability Spaces and i.i.d. RVs 77
4.1 Probability Space (S(cid:48),E(cid:48),µ(cid:48)) and i.i.d. {X }N . . . . . . . . . . . . . . . . 78
j j=1
4.1.1 First Construction: (S(cid:48) ,E(cid:48) ,µ(cid:48) ) . . . . . . . . . . . . . . . . . . . . 79
F F F
4.2 Simulation of Random Variables - Theory . . . . . . . . . . . . . . . . . . . 81
4.2.1 Distributional Results . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Independence Results . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.3 Second Construction: (S(cid:48) ,E(cid:48) ,µ(cid:48) ) . . . . . . . . . . . . . . . . . . . 88
U U U
4.3 An Alternate Construction for Discrete Random Variables . . . . . . . . . 91
4.3.1 Third Construction: (S(cid:48),E(cid:48),µ(cid:48)) . . . . . . . . . . . . . . . . . . . . . 93
p p p
5 Limit Theorems for RV Sequences 99
5.1 Two Limit Theorems for Binomial Sequences . . . . . . . . . . . . . . . . . 99
5.1.1 The Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . 100
5.1.2 The Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . . 103
5.1.3 Strong Laws versus Weak Laws . . . . . . . . . . . . . . . . . . . . . 108
5.2 Convergence of Random Variables 1 . . . . . . . . . . . . . . . . . . . . . . 108
5.2.1 Notions of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.2 Convergence Relationships . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.3 Slutsky’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.4 Kolmogorov’s Zero-One Law . . . . . . . . . . . . . . . . . . . . . . 118
6 Distribution Functions and Borel Measures 123
6.1 Distribution Functions on R . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.1.1 Probability Measures from Distribution Functions . . . . . . . . . . 126
6.1.2 Random Variables from Distribution Functions . . . . . . . . . . . . 129
6.2 Distribution Functions on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.2.1 Probability Measures from Distribution Functions . . . . . . . . . . 131
6.2.2 Random Vectors from Distribution Functions . . . . . . . . . . . . . 135
6.2.3 Marginal and Conditional Distribution Functions . . . . . . . . . . . 136
7 Copulas and Sklar’s Theorem 137
7.1 Fr´echet Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Copulas and Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.1 Identifying Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.3 Partial Results on Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . 145
7.4 Examples of Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.4.1 Archimedean Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4.2 Extreme Value Copulas . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.5 General Result on Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . 158
7.5.1 The Distributional Transform . . . . . . . . . . . . . . . . . . . . . . 160
7.5.2 Sklar’s Theorem - The General Case . . . . . . . . . . . . . . . . . . 164
7.6 Tail Dependence and Copulas . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.6.1 Bivariate Tail Dependence . . . . . . . . . . . . . . . . . . . . . . . . 165
7.6.2 Multivariate Tail Dependence and Copulas . . . . . . . . . . . . . . 170
7.6.3 Survival Functions and Copulas . . . . . . . . . . . . . . . . . . . . . 173
8 Weak Convergence 179
8.1 Definitions of Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . 180
8.2 Properties of Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . 184
8.3 Weak Convergence and Left Continuous Inverses . . . . . . . . . . . . . . . 189
8.4 Skorokhod’s Representation Theorem . . . . . . . . . . . . . . . . . . . . . 191
Contents ix
8.4.1 Mapping Theorem on R . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.5 Convergence of Random Variables 2 . . . . . . . . . . . . . . . . . . . . . . 194
8.5.1 Mann-Wald Theorem on R . . . . . . . . . . . . . . . . . . . . . . . 194
8.5.2 The Delta-Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9 Estimating Tail Events 1 201
9.1 Large Deviation Theory 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.2 Extreme Value Theory 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.2.1 Introduction and Examples . . . . . . . . . . . . . . . . . . . . . . . 206
9.2.2 Extreme Value Distributions . . . . . . . . . . . . . . . . . . . . . . 210
9.2.3 The Fisher-Tippett-Gnedenko Theorem . . . . . . . . . . . . . . . . 212
9.3 The Pickands-Balkema-de Haan Theorem . . . . . . . . . . . . . . . . . . . 223
9.3.1 Quantile Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.3.2 Tail Probability Estimation . . . . . . . . . . . . . . . . . . . . . . . 224
9.4 γ in Theory: von Mises’ Condition . . . . . . . . . . . . . . . . . . . . . . . 229
9.5 Independence vs. Tail Independence . . . . . . . . . . . . . . . . . . . . . . 234
9.6 Multivariate Extreme Value Theory . . . . . . . . . . . . . . . . . . . . . . 235
9.6.1 Multivariate Fisher-Tippett-Gnedenko Theorem . . . . . . . . . . . 236
9.6.2 The Extreme Value Distribution G . . . . . . . . . . . . . . . . . . . 238
9.6.3 The Extreme Value Copula C . . . . . . . . . . . . . . . . . . . . . 241
G
References 249
Index 253
Taylor & Francis
Taylor & Francis Group
http://taylorandfrancis.com