ebook img

Foundations of Inductive Logic Programming PDF

406 Pages·1997·10.216 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundations of Inductive Logic Programming

Lecture Notes in Artificial Intelligence 1228 Subseries of Lecture Notes in Computer Science Edited by .J G. Carbonell and J. Siekmann Lecture Notes in Computer Science Edited by G. Goos, J. Hartmanis and J. van Leeuwen Springer Berlin Heidelberg New York Barcelona Budapest Hong Kong London Milan Paris Santa Clara Singapore Tokyo Shan-Hwei Nienhuys-Cheng Ronald de Wolf snoitadnuoF of evitcudnI Logic gnimmargorP r e g n~ i r p S Series Editors Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, ,AP USA J6rg Siekmann, University of Saarland, Saarbrticken, Germany Authors Shan-Hwei Nienhuys-Cheng Ronald de Wolf Erasmus University of Rotterdam, Department of Computer Science P.O. Box 1738, 3000 DR Rotterdam,The Netherlands E-mail: cheng @cs.few.eur.nl Cataloging-in-Publication Data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Nienhuys-Cheng, Shan-Hwei: Foundations of inductive logic programming / S.-H. Nienhuys-Cheng ; R. de Wolf. - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer, 1997 (Lecture notes in computer science ; 1228 : Lecture notes in artificial intelligence) ISBN 3-540-62927-0 kart. CR Subject Classification (1991): 1.2,F.4.1, D.1.6 ISBN 3-540-62927-0 Springer-Verlag Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is coneerned~ specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer -Verlag. Violations are liable for prosecution under the German Copyright Law. (cid:14)9 Springer-Verlag Berlin Heidelberg 1997 Printed in Germany Typesetting: Camera ready by author SPIN 10549682 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper Foreword One of the most interesting recent developments within the field of auto- mated deduction is inductive logic programming, an area that combines logic programming with machine learning. Within a short time this area has grown to an impressive field, rich in spectacular applications and full of techniques calling for new theoretical insights. This is the first book that provides a systematic introduction to the theo- retical foundations of this area. It is a most welcome addition to the literature concerning learning, resolution, and logic programming. The authors offer in this book a solid, scholarly presentation of the sub- ject. By starting their presentation with a self-contained account of the res- olution method and of the foundations of logic programming they enable the reader to place the theory of inductive logic programming in the right historical and mathematical perspective. By presenting in detail the theoret- ical aspects of all components of inductive logic programming they make it clear that this field has grown into an important area of theoretical computer science. The presentation given by the authors also allows us to reevaluate the role of some, until now, isolated results in the field of resolution and yields an interesting novel framework that sheds new light on the use of first-order logic in computer science. I would like to take this opportunity to congratulate the authors on the outcome of their work. I am sure this book will have an impact on the future of inductive logic programming. March 1997 Krzysztof R. Apt CWI and University of Amsterdam The Netherlands Contents About the Book (cid:141) I Logic 1 1 Propositional Logic 3 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Informally . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Interpretations . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Conventions to Simplify Notation . . . . . . . . . . . . . . . . 15 1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2 First-Order Logic 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Informally . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Interpretations . . . . . . . . . . . . . . . . . . . . . . 24 2.3.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Conventions to Simplify" Notation . . . . . . . . . . . . . . . . 33 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Normal Forms and Herbrand Models 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Prenex Conjunctive Normal Form . . . . . . . . . . . . . . . . 36 3.3 Skolem Standard Form . . . . . . . . . . . . . . . . . . . . . . 39 3.3.1 Clauses and Universal Quantification .......... 39 3.3.2 Standard Form . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Herbrand Models . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 Results Concerning Herbrand Models . . . . . . . . . . . . . . 48 vlll CONTENTS 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.A Alternative Notation for Standard Forms ........... 51 4 Resolution 55 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2 What Is a Proof Procedure? ................... 57 4.3 Substitution and Unification ................... 59 4.3.1 Substitution . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.2 Unification . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 An Informal Introduction to Resolution ............ 65 4.5 A Formal Treatment of Resolution ............... 68 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Subsumption Theorem and Refutation Completeness 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Deductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 The Subsumption Theorem ................... 78 5.3.1 The Subsumption Theorem for Ground 2 and C . . . 78 5.3.2 The Subsumption Theorem when C is Ground .... 79 5.3.8 The Subsumption Theorem (General Case) ...... 82 5.4 Refutation Completeness ..................... 84 5.4.1 From the Subsumption Theorem to Refutation Com- pleteness . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.2 From Refutation Completeness to the Subsumption Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.5 Proving Non-Clausal Logical Implication ............ 87 5.6 How to Find a Deduction .................... 87 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.A Alternative Definitions of Resolution .............. 91 Linear and Input Resolution 93 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Linear Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.3 Refutation Completeness ..................... 95 6.4 The Subsumption Theorem ................... 98 6.5 The Incompleteness of Input Resolution ............ 100 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 SLD-Reso!ution 105 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.2 SLD-Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.3 Soundness and Completeness .................. 108 7.3.1 Refutation Completeness ................ 108 7.3.2 The Subsumption Theorem ............... 109 7.4 Definite Programs and Least Herbrand Models ........ 111 CONTENTS Ix 7.5 Correct Answers and Computed Answers ........... 1!3 7.6 Computation Rules ........................ 119 7.7 SLD-Trees ............................. 122 7.8 Undecidability .......................... 125 7.9 Summary ............................. 126 8 SLDNF-Resolution 127 8.1 Introduction ............................ 127 8.2 Negation as Failure ........................ 130 8.3 SLDNF-Trees for Normal Programs ............... 133 8.4 Floundering, and How to Avoid It ............... 141 8.5 The Completion of a Normal Program ............. 145 8.6 Soundness with Respect to the Completion .......... 150 8.7 Completeness ........................... 153 8.8 Prolog ............................... 154 8.8.1 Syntax ........................... 154 8.8.2 Prolog and SLDNF-Trees ................ 155 8.8.3 The Cut Operator .................... 157 8.9 Summary ............................. 159 II Inductive Logic Programming 161 What Is Inductive Logic Programming? 163 9.1 Introduction ............................ 163 9.2 The Normal Problem Setting for ILP .............. 165 9.3 The Nonmonotonic Problem Setting .............. 172 9.4 Abduction ............................. 173 9.5 A Brief History of the Field ................... 174 9.6 Summary ............................. 177 10 The Framework for Model Inference 179 10.1 Introduction ............................ 179 10.2 Formalizing the Problem ..................... 180 10.2.1 Enumerations and the Oracle .............. 180 10.2.2 Complete Axiomatizations and Admissibility ..... 182 10.2.3 Formal Statement of the Problem ............ 184 10.3 Finding a False Clause by Backtracing ............. 186 10.4 Introduction to Refinement Operators ............. 191 10.5 The Model Inference Algorithm ................. 192 10.6 Summary ............................. 195 X CONTENTS 11 Inverse Resolution 197 11.1 Introduction ............................ 197 11.2 The V-Operator ......................... 198 11.3 The W-Operator ......................... 203 11.4 Motivation for Studying Generality Orders ........... 205 11.5 Summary ............................. 205 12 Unfolding 207 12.1 Introduction ............................ 207 12.2 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.3 UDS Specialization . . . . . . . . . . . . . . . . . . . . . . . . 213 12.4 Summary ............................. 217 13 The Lattice and Cover Structure of Atoms 219 13.1 Introduction ............................ 219 13.2 Quasi-Ordered Sets ........................ 220 13.3 Quasi-Ordered Sets of Clauses .................. 225 13.4 Atoms as a Quasi-Ordered Set ................. 225 13.4.1 Greatest Specializations ................. 227 13.4.2 Least Generalizations .................. 227 13.5 Covers ............................... 232 13.5.1 Downward Covers .................... 232 13.5.2 Upward Covers ...................... 234 13.6 Finite Chains of Downward Covers ............... 234 13.7 Finite Chains of Upward Covers ................. 237 13.8 Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 13.9 Summary ............................. 241 14 The Subsumption Order 243 14.1 Introduction ............................ 243 14.2 Clauses Considered as Atoms .................. 243 14.3 Subsumption ........................... 245 14.4 Reduction ............................. 247 14.5 Inverse Reduction ......................... 249 14.6 Greatest Specializations ..................... 251 14.7 Least Generalizations ...................... 252 14.8 Covers in the Subsume Order .................. 256 14.8.1 Upward Covers ...................... 256 14.8.2 Downward Covers .................... 257 14.9 A Complexity Measure for Clauses ............... 260 14.9.1 Size as Defined by Reynolds ............... 260 14.9.2 A New Complexity Measure ............... 261 14.10 Summary ............................. 262 CONTENTS ~x 15 The Implication Order 265 15.1 Introduction ............................ 265 15.2 Least Generalizations ...................... 266 15.2.1 A Sufficient Condition for the Existence of an LGI . . 267 15.2.2 The LGI is Computable ................. 274 15.3 Greatest Specializations ..................... 275 15.4 Covers in the Implication Order ................. 277 15.5 Summary ............................. 278 16 Background Knowledge 279 16.1 Introduction ............................ 279 16.2 Relative Subsumption ...................... 281 16.2.1 Definition and Some Properties ............. 281 16.2.2 Least Generalizations .................. 285 16.3 Relative Implication ....................... 287 16.3.1 Definition and Some Properties ............. 287 16.3.2 Least Generalizations .................. 288 16.4 Generalized Subsumption .................... 289 16.4.1 Definition and Some Properties ............. 289 16.4.2 Least Generalizations .................. 294 16.5 Summary ............................. 297 17 Refinement Operators 299 17.1 Introduction ............................ 299 17.2 Ideal Refinement Operators for Atoms ............. 300 17.3 Non-Existence of Ideal Refinement Operators ......... 303 17.4 Complete Operators for Subsumption ............. 305 17.4.1 Downward ......................... 305 17.4.2 Upward .......................... 306 17.5 Ideal Operators for Finite Sets ................. 310 17.5.1 Downward ......................... 311 17.5.2 Upward .......................... 315 17.6 Optimal Refinement Operators ................. 316 17.7 Refinement Operators for Theories ............... 317 17.8 Summary ............................. 319 18 PAC Learning 321 18.1 Introduction ............................ 321 18.2 PAC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 322 18.3 Sample Complexity ........................ 324 18.4 Time Complexity ......................... 326 18.4.1 Representations ...................... 326 18.4.2 Polynomial Time PAC Learnability ........... 328 18.5 Some Related Settings ...................... 329 18.5.1 Polynomial Time PAC Predictability .......... 329

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.