ebook img

Foundation Engineering PDF

534 Pages·1994·11.761 MB·1-519\534
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Foundation Engineering

ERRATUM Authors corrections after printing: Foundation Engineering by S. Hansbo ISBN 0.444.88549.8 REFERENCE LIST; COMPLEMENTARY ADDITION Alphan, I., 1967. The empirical evaluation of the coefficient K and K . Jap. Soc. Soil 0 QR Mech. Found. Eng., Soil and Found., Vol. 7, No. 1, 31-40. American Concrete Pipe Association, ACPA, 1988. Concrete pipe handbook. ISBN 0-90- 38681-6, Vienna, USA. Bergado, D. T., Chai, C. T., Alfaro, M. C. & Balasubramaniam, A. S., 1992. Improvement techniques of soft ground in subsiding and lowland environment. Asian Inst, of Technology, Bangkok. Berggren, B., 1981. Grävpälar pà friktionsjord—sättningar och bärförmaga (Bored piles on non-cohesive soils—settlement and bearing capacity). Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Bustamante, M. G. & Gianeselli, L., 1981. Readjustment des paramètres des calculs des pieux. Proc. 10th Int. Conf. Soil Mech. Found. Eng., Vol. 2, 643-646. Cambefort, H., 1967. Injection des sols. Eyrolles, Vol. 1 and 2. Chambosse, G. & Dobson, T., 1982. Stone columns I—Estimation of bearing capacity and expected settlement in cohesive soils. GKN Keller Inc., Tampa, Florida. Caquot, Α., Kerisel, J. & Absi, F., 1973. Tables de butée et de poussée. Gauthier-Villars, Paris-Bruxelles-Montréal. Donchev, P., 1980. Compaction of loess by saturation and explosion. Int. Conf. on Com- paction, Paris, Vol 1,313-317. Esrig, M. J., 1968. Pore pressures, consolidation, and electrokinetics. Proc. ASCE, J. Soil Mech. Found. Eng., Vol. 94, SM 4. Hansbo, S., 1962. Ny konapparat för bestämning av lerors skärhallfasthet. (A new cone apparatus for determination of the shear strength of clays). Byggmästaren No. 10, 215- 220. Hansbo, S., Hofmann, E. & Mosesson, J., 1973. Östra Nordstaden, Gothenburg. Experiences concerning a difficult foundation problem and its unorthodox solution. Proc. 8th Int. Conf. Soil Mech. Found. Eng., Moscow, Vol. 2.2, 105-110. Hansbo, S. & Jendeby, L., 1983. A case study of two alternative foundation principles: conventional friction piling and creep piling. Vag- och Vattenbyggarcn, No.7-8,29-31. Hansbo, S. & Källström, R., 1983. Creep piles—a cost-effective alternative to conventional friction piles. Väg- och vattenbyggaren No. 7-8, 23-27. Hansbo, S., Pramborg, B. & Nordin, P. O., 1977. The Vänern terminal. Illustrative example of dynamic consolidation of hydraulically placed fill of organic silt and sand. Sols Soils, No. 25,5-11. Hardin, B. O. & Black, W. L., 1969. Vibration modulus of normally consolidated clay. (Closure). Proc. ASCE, J. Soil Mech. Found. Div., Vol. 95, No. SM 6, 1531-1537. Hardin, B. O. & Richart, F. E. Jr., 1963. Elastic wave velocities in granular soils. Proc. ASCE, J. Soil Mech. Found. Div., Vol. 89, No. SM 1, 35-65. Jamiolkowski, M., Ladd, C. C, Germaine, J. T. & Lancelotta, R., 1985. New developments in field and laboratory testing of soils. Proc. 11th Int. Conf. Soil Mech. Found. Eng., San Francisco, Vol 1, 57-154. Janbu, Ν., 1965. Consolidation of clay layers based on non-linear stress-strain. Proc. 6th Int. Conf. Soil Mech. Found. Eng., Montreal, Vol. 2, 83-87. Karol, R. H., 1960. Field tests for evaluating the effectiveness of a grouting operation. Am. Cyan. Co Expl. and Min. Chem. Dep. Larsson, R., 1975. Konsolidering av lera med elektroosmos. (Consolidation of clay by means of electro-osmosis). Byggforskningen R45: 1975. Larsson, R., 1977. Basic behaviour of Scandinavian soft clays. Swedish Geotech. Institute, Report No. 4. Liedberg, S., 1991. Earth pressure distribution against rigid pipes under various bedding conditions. Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Littlejohn, G. S., 1992. Chemical grouting. In: M. P. Moseley (Editor), Ground improve- ment, Blackie Academic & Professional, CRC Press, Inc., 100-129. Maag, E., 1938.Über die Verfestigung und Dichtung des Baugrundes (Injektionen). Erdbautechnik, ΕΤΗ. Mesri, G. & Godlewski, P. M.,1977. Time- and stress-compressibility interrelationship. ASCE, J. Geotech. Eng. Div., GT 5, 417-430. Olander, H. C, 1950. Stress analysis of concrete pipe. US Bureau Reel. Eng. Monographs, No. 6. Pramborg, B. & Albertsson, B., 1992. Undersökning av kalk/cementpelare. (Investigation of lime/cement columns). SBUF-Anslag Projekt 1075. Pusch, R., Hansbo, S., Berg, G. & Henricson, E., 1974. Bärighet och sättningar vid grundläggning pâ berg. (Bearing capacity and settlement when founding on rock). Svenska Byggnadsentreprenörföreeningen, Report No. 11. Schneider, P. J., 1963. Temperature response charts. New York/ London, Wiley. Schmertmann, J. H., 1955. The undisturbed consolidation behaviour of clay. Transactions ASCE, Vol. 120. Schmertmann, J. H., Hartmann, J. P. & Brown, P. R., 1978. Improved strain influence factor diagrams. ASCE, J. Soil Mech. Found. Div., No. GT 8. Schulter, A. & Wagener, H., 1989. Improvement of clay and silt by dewatering with a new anchoring technology. Proc. 12th Int. Conf. Soil Mech. Found. Eng., Vol. 2,1409-1414. Simonini, P. & Sorenzo, M, 1987. Design and performance of piles driven into a soft cohesive deposit. Proc. Int. Symp. on Geot. Eng. of Soft Soils, Mexico, Vol. 1,371-378. Smith, W. W., 1978. Stresses in rigid pipe. ASCE, Transp. Eng. J., Vol. 104,No. TE 3. Spangler, M. G., 1948. Underground conduits—An appraisal of modem research. ASCE, Trans., Vol. 113. Svensson, P. L., 1991. Soil-structure interaction of foundations on soft clay—Experience during the last ten years. Proc. 10th European Conf. Soil Mech. Found. Eng., Florence, Vol II, 583-586. Széchy, Κ., 1965. Der Grundbau, Vol. 2, Part 1—Die Baugrube. Springer-Verlag, Wien/ New York. Sällfors, G., 1975. Preconsolidation pressure of soft high-plastic clays. Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Terzaghi, K., 1923. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akad. Wissensch., Wien, Sitzungsber. Bd. 132, H. 1, Mat.-Naturwissensch. Klasse. Terzaghi, K., 1925. Erdbaumechanik. Leipzig-Wien. Terzaghi, K., 1943. Theoretical soil mechanics. New York. Âstedt, Β., Weiner, L. & Holm, G., 1990. Friktionspâlar. Bärförmagans tillväxt med tiden. (Friction piles. Increase in bearing capacity with time). Preprint, Swedish Geotech. Inst., Linköping. CORRIGENDA Cross - refe rences : Delete: page; line from bottom - line from top + p. 247, bottom 65; 8- (see paragraph 6.3) 'Furthermore, the maximum ··· can be 91; 10- in par. 6.2 established.' 99; 3- Section 5.3 p. 248, top 127,11+ Eq. (110) 6+ (cf. pp. 275-277) mz{)oß +cz0(u +kzo = QQ (298) 7- (p. 324) p. 227, 2- (Poulus, 1990) 7- (seep. 179) 7+ Fig. 138 Other corrections: 16- Eq. (206) page 7- p. 192 77,3+ (Schmertmann, 1955) 2+ (Figs. 165-166) 79, 1- Mesri et al (1990) 5+ Eq. (10) 125, Eq. (107) 6+ Eqs. (299-300) ^-ds + Ipia^'^-ds + /sin(v + φ') 11- Fig. 105c os as 2- Eq. (286) 125, Fig. 92. 15+ Eq. (147) dv ,dv 11+ (Fig. 196) Replace 2p—ds by 2/?tan</> — ds ds os 18- Fig. 187 , ^ dv . , _ ,,àv . 12+ (Fig. 218) and ip—drby 2/?tan0 — dr or or 15+ (p. 127) i38;Ex. 13 1 (vert.): 1.5 (hor.) 8+ (Fig. 230) 195; Fig. 139 q (in MPa) 11- Fig. 232 c 214, Eq. (250) 8- Fig. 80 4- (p. 116) da y = o 11+ Fig. 80 1+ (Fig. 226) 217,9+ (Davisson et ai, 1965) 3- (Figs. 269-270) 220; Fig. 157 ·· equal to 4b ·· p 8+ Eqs. 365-366 221; Table 26 Initial I% D 5+ Eq. (12) 223; 12+ 60 mm by 60 mm 9- Eq. (12) 223; Fig. 159 ·· equal to 4b ·· p 9- Eq. (510) 224; Fig. 160 ·· equal to Sb ·· p 6- Eq. (510) and Fig. 320 228; 3+ Hansbo et ai, 1973 12- Eq. (513) 231, 4- Randolph and Clancy, 1993 4- Eq. (513) 266; 2+ 17+ (Fig. 353) The displacement amplitude at D is obtained 1- Eq. (545) when the force vector is pointing in the χ 11+ Fig. 353 direction. 342, Eq. (447) Add: M s = Rlrl = RB(c'+ a'tantfO/^, p. 113, after (Fig. 82). 344,6- F ^ 1.05-1.06= 1.11 C Count the number of tetragons η covered by 353,5- FQ= 1.05-1.06= 1.11 the loaded area. The stress is obtained by the C expression Δσ = 0.00\nq. 479, 5- The standardised form of normal distribution (p(x)= —= exp(-— ) ERRATUM Authors corrections after printing: Foundation Engineering by S. Hansbo ISBN 0.444.88549.8 REFERENCE LIST; COMPLEMENTARY ADDITION Alphan, I., 1967. The empirical evaluation of the coefficient K and K. Jap. Soc. Soil 0 0R Mech. Found. Eng., Soil and Found., Vol. 7, No. 1, 31-40. American Concrete Pipe Association, ACPA, 1988. Concrete pipe handbook. ISBN 0-90- 38681-6, Vienna, USA. Bergado, D. T., Chai, C. T., Alfaro, M. C. & Balasubramaniam, A. S., 1992. Improvement techniques of soft ground in subsiding and lowland environment. Asian Inst, of Technology, Bangkok. Berggren, B., 1981. Gravpâlar pâ friktionsjord—sättningar och bärförmaga (Bored piles on non-cohesive soils—settlement and bearing capacity). Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Bustamante, M. G. & Gianeselli, L., 1981. Readjustment des paramètres des calculs des pieux. Proc. 10th Int. Conf. Soil Mech. Found. Eng., Vol. 2, 643-646. Cambefort, H., 1967. Injection des sols. Eyrolles, Vol. 1 and 2. Chambosse, G. & Dobson, T., 1982. Stone columns I—Estimation of bearing capacity and expected settlement in cohesive soils. GKN Keller Inc., Tampa, Florida. Caquot, Α., Kerisel, J. & Absi, F., 1973. Tables de butée et de poussée. Gauthier-Villars, Paris-Bruxelles-Montréal. Donchev, P., 1980. Compaction of loess by saturation and explosion. Int. Conf. on Com- paction, Paris, Vol 1, 313-317. Esrig, M. J., 1968. Pore pressures, consolidation, and electrokinetics. Proc. ASCE, J. Soil Mech. Found. Eng., Vol. 94, SM 4. Hansbo, S., 1962. Ny konapparat for bestämning av lerors skärhallfasthet. (A new cone apparatus for determination of the shear strength of clays). Byggmästaren No. 10, 215- 220. Hansbo, S., Hofmann, E. & Mosesson, J., 1973. Östra Nordstaden, Gothenburg. Experiences concerning a difficult foundation problem and its unorthodox solution. Proc. 8th Int. Conf. Soil Mech. Found. Eng., Moscow, Vol. 2.2, 105-110. Hansbo, S. & Jendeby, L., 1983. A case study of two alternative foundation principles: conventional friction piling and creep piling. Väg- och Vattenbyggaren, No.7-8,29-31. Hansbo, S. & Källström, R., 1983. Creep piles—a cost-effective alternative to conventional friction piles. Väg- och vattenbyggaren No. 7-8, 23-27. Hansbo, S., Pramborg, B. & Nordin, P. O., 1977. The Vänern terminal. Illustrative example of dynamic consolidation of hydraulically placed fill of organic silt and sand. Sols Soils, No. 25,5-11. Hardin, B. O. & Black, W. L., 1969. Vibration modulus of normally consolidated clay. (Closure). Proc. ASCE, J. Soil Mech. Found. Div., Vol. 95, No. SM 6, 1531-1537. Hardin, B. O. & Richart, F. E. Jr., 1963. Elastic wave velocities in granular soils. Proc. ASCE, J. Soil Mech. Found. Div., Vol. 89, No. SM 1, 35-65. Jamiolkowski, M., Ladd, C. C, Germaine, J. T. & Lancelotta, R., 1985. New developments in field and laboratory testing of soils. Proc. 11th Int. Conf. Soil Mech. Found. Eng., San Francisco, Vol 1,57-154. Janbu, Ν., 1965. Consolidation of clay layers based on non-linear stress-strain. Proc. 6th Int. Conf. Soil Mech. Found. Eng., Montreal, Vol. 2, 83-87. Karol, R. H., 1960. Field tests for evaluating the effectiveness of a grouting operation. Am. Cyan. Co Expl. and Min. Chem. Dep. Larsson, R., 1975. Konsolidering av lera med elektroosmos. (Consolidation of clay by means of electro-osmosis). Byggforskningen R45: 1975. Larsson, R., 1977. Basic behaviour of Scandinavian soft clays. Swedish Geotech. Institute, Report No. 4. Liedberg, S., 1991. Earth pressure distribution against rigid pipes under various bedding conditions. Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Littlejohn, G. S., 1992. Chemical grouting. In: M. P. Moseley (Editor), Ground improve- ment, Blackie Academic & Professional, CRC Press, Inc., 100-129. Maag, E., 1938.Über die Verfestigung und Dichtung des Baugrundes (Injektionen). Erdbautechnik, ΕΤΗ. Mesri, G. & Godlewski, P. M.,1977. Time- and stress-compressibility interrelationship. ASCE, J. Geotech. Eng. Div., GT 5, 417-430. Olander, H. C, 1950. Stress analysis of concrete pipe. US Bureau Reel. Eng. Monographs, No. 6. Pramborg, B. & Albertsson, B., 1992. Undersökning av kalk/cementpelare. (Investigation of lime/cement columns). SBUF-Anslag Projekt 1075. Pusch, R., Hansbo, S., Berg, G. & Henricson, E., 1974. Bärighet och sättningar vid grundläggning pâ berg. (Bearing capacity and settlement when founding on rock). Svenska Byggnadsentreprenörföreeningen, Report No. 11. Schneider, P. J., 1963. Temperature response charts. New York/ London, Wiley. Schmertmann, J. H., 1955. The undisturbed consolidation behaviour of clay. Transactions ASCE, Vol. 120. Schmertmann, J. H., Hartmann, J. P. & Brown, P. R., 1978. Improved strain influence factor diagrams. ASCE, J. Soil Mech. Found. Div., No. GT 8. Schulter, A. & Wagener, H., 1989. Improvement of clay and silt by dewatering with a new anchoring technology. Proc. 12th Int. Conf. Soil Mech. Found. Eng., Vol. 2,1409-1414. Simonini, P. & Sorenzo, M, 1987. Design and performance of piles driven into a soft cohesive deposit. Proc. Int. Symp. on Geot. Eng. of Soft Soils, Mexico, Vol. 1,371-378. Smith, W. W., 1978. Stresses in rigid pipe. ASCE, Transp. Eng. J., Vol. 104,No. TE 3. Spangler, M. G., 1948. Underground conduits—An appraisal of modem research. ASCE, Trans., Vol. 113. Svensson, P. L., 1991. Soil-structure interaction of foundations on soft clay—Experience during the last ten years. Proc. 10th European Conf. Soil Mech. Found. Eng., Florence, Vol II, 583-586. Széchy, Κ., 1965. Der Grundbau, Vol. 2, Part 1—Die Baugrube. Springer-Verlag, Wien/ New York. Sällfors, G., 1975. Preconsolidation pressure of soft high-plastic clays. Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Terzaghi, K., 1923. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akad. Wissensch., Wien, Sitzungsber. Bd. 132, H. 1, Mat.-Naturwissensch. Klasse. Terzaghi, K., 1925. Erdbaumechanik. Leipzig-Wien. Terzaghi, K., 1943. Theoretical soil mechanics. New York. Âstedt, Β., Weiner, L. & Holm, G., 1990. Friktionspâlar. Bärförmagans tillväxt med tiden. (Friction piles. Increase in bearing capacity with time). Preprint, Swedish Geotech. Inst., Linköping. CORRIGENDA Cross - refe rences : Delete: page; line from bottom - , line from top + p. 247, bottom 65; 8- (see paragraph 6.3) 'Furthermore, the maximum can be 91; 10- in par. 6.2 established.' 99; 3- Section 5.3 p. 248, top 127 11 + Eq.(llO) 134 6+ (cf. pp. 275-277) mzQuP- +cz0co +kzo = QQ (298) 154 7- (p. 324) p. 227, 2- (Poulus, 1990) 162 7- (see p. 179) 192 7+ Fig. 138 Other corrections: 201 16- Eq. (206) page 229 7- p. 192 77, 3+ (Schmertmann, 1955) 234 2+ (Figs. 165-166) 79, 1- Mesri et al (1990) 241 5+ Eq.(10) 125, Eq. (107) 248 6+ Eqs. (299-300) 251 11- Fig. 105c %ds + 2/?tan0'^ds + / sin(v + φ') os ds 259 2- Eq. (286) 125, Fig. 92. 264 15+ Eq. (147) 280 11+ (Fig. 196) Replace 2p—ds by 2/?tan0 — ds os ds 294 18- Fig. 187 , ^ àv , , ^ ,àv , 305 12+ (Fig. 218) and zp—drby 2/ ?tan0 ±— dr 314 15+ (p. 127) or or 138; Ex. 13 1 (vert.): 1.5 (hor.) 320 8+ (Fig. 230) 195; Fig. 139 ^(inMPa) 321 11- Fig. 232 c 214, Eq. (250) 323 8- Fig. 80 323 4- (p.116) = 0 329 11+ Fig. 80 334 1+ (Fig. 226) 217, 9+ (Davisson et al, 1965) 376 3- (Figs. 269-270) 220; Fig. 157 ·· equal to 4b ·· p 389 8+ Eqs. 365-366 221; Table 26 Initial I% D 400 5+ Eq.(12) 223; 12+ 60 mm by 60 mm 401 9- Eq.(12) 223; Fig. 159 ·· equal to 4b ·• p 434 9- Eq. (510) 224; Fig. 160 ·· equal to Sb ·· p 444 6- Eq. (510) and Fig. 320 228; 3+ Hansboeia/., 1973 445 12- Eq. (513) 231, 4- RandolphandClancy, 1993 449 4- Eq. (513) 266; 2+ 488 17+ (Fig. 353) The displacement amplitude at D is obtained 489 1- Eq. (545) when the force vector is pointing in the χ 490 11+ Fig. 353 direction. 342, Eq. (447) Add: M = #Στ/ = /Œ/(c'+ a'tan^O/^ S p. 113, after (Fig. 82). 344,6- Fp~ 1.05-1.06 = 1.11 Count the number of tetragons η covered by c( 353, 5- F ^ 1.05-1.06= 1.11 the loaded area. The stress is obtained by the C expression Δσ= 0.00 \nq. 479, 5- The standardised form of normal distribution (p(x) = -7=exp(-— ) 72π 2 ERRATUM Authors corrections after printing: Foundation Engineering by S. Hansbo ISBN: 0.444.88549.8 REFERENCE LIST; COMPLEMENTARY ADDITION Alphan, I., 1967. The empirical evaluation of the coefficient K and K . Jap. Soc. Soil Mech. 0 0R Found. Eng., Soil and Found., Vol. 7, No. 1, 31-40. American Concrete Pipe Association, ACPA, 1988. Concrete pipe handbook. ISBN 0-90- 38681-6, Vienna, USA. Bergado, D. T., Chai, C. T., Alfaro, M. C. & Balasubramaniam, A. S., 1992. Improvement techniques of soft ground in subsiding and lowland environment. Asian Inst, of Technology, Bangkok. Berggren, B., 1981. Gravpâlar pâ friktionsjord—sättningar och bärförmaga (Bored piles on non-cohesive soils—settlement and bearing capacity). Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Bustamante, M. G. & Gianeselli, L., 1981. Readjustment des paramètres des calculs des pieux. Proc. 10th Int. Conf. Soil Mech. Found. Eng., Vol. 2, 643-646. Cambefort, H., 1967. Injection des sols. Eyrolles, Vol. 1 and 2. Chambosse, G. & Dobson, T., 1982. Stone columns I—Estimation of bearing capacity and expected settlement in cohesive soils. GKN Keller Inc., Tampa, Florida. Caquot, Α., Kerisel, J. & Absi, F., 1973. Tables de butée et de poussée. Gauthier-Villars, Paris-Bruxelles-Montréal Esrig, M. J., 1968. Pore pressures, consolidation, and electrokinetics. Proc. ASCE, J. Soil Mech. Found. Eng., Vol. 94, SM 4. Hansbo, S. & Jendeby, L., 1983. A case study of two alternative foundation principles: conventional friction piling and creep piling. Väg- och Vattenbyggaren, No.7-8,29-31. Hansbo, S. & Källström, R., 1983. Creep piles—a cost-effective alternative to conventional friction piles. Väg- och vattenbyggaren No. 7-8, 23-27. Hansbo, S., Pramborg, B. & Nordin, P. O., 1977. The Vänern terminal. Illustrative example of dynamic consolidation of hydraulically placed fill of organic silt and sand. Sols Soils, No. 25, 5-11. Hardin, B. O. & Black, W. L., 1969. Vibration modulus of normally consolidated clay. (Closure). Proc. ASCE, J. Soil Mech. Found. Div., Vol. 95, No. SM 6, 1531-1537. Hardin, B. O. & Richart, F. E. Jr., 1963. Elastic wave velocities in granular soils. Proc. ASCE, J. Soil Mech. Found. Div., Vol. 89, No. SM 1, 35-65. Karol, R. H., 1960. Field tests for evaluating the effectiveness of a grouting operation. Am. Cyan. Co Expl. and Min. Chem. Dep. Larsson, R., 1977. Basic behaviour of Scandinavian soft clays. Swedish Geotech. Institute, Report No. 4. Liedberg, S., 1991. Earth pressure distribution against rigid pipes under various bedding conditions. Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Littlejohn, G. S., 1992. Chemical grouting. In: M. P. Moseley (Editor), Ground improve- ment, Blackie Academic & Professional, CRC Press, Inc., 100-129. Mesri, G. & Godlewski, P. M., 1977. Time- and stress-compressibility interrelationship. ASCE, J. Geoteçh. Eng. Div., GT 5,417-430. Olander, H. C, 1950. Stress analysis of concrete pipe. US Bureau Reel. Eng. Monographs, No. 6. Schneider, P. J., 1963. Temperature response charts. New York/ London, Wiley. Schmertmann, J. H., 1955. The undisturbed consolidation behaviour of clay. Transactions ASCE, Vol. 120. Schmertmann, J. H., Hartmann, J. P. & Brown, P. R., 1978. Improved strain influence factor diagrams. ASCE, J. Soil Mech. Found. Div., No. GT 8. Simonini, P. & Sorenzo, M, 1987. Design and performance of piles driven into a soft cohesive deposit. Proc. Int. Symp. on Geot. Eng. of Soft Soils, Mexico, Vol. 1,371-378. Smith, W. W., 1978. Stresses in rigid pipe. ASCE, Transp. Eng. J., Vol. 104,No. TE 3. Spangler, M. G., 1948. Underground conduits—An appraisal of modem research. ASCE, Trans., Vol. 113. Svensson, P. L., 1991. Soil-structure interaction of foundations on soft clay—Experience during the last ten years. Proc. 10th European Conf. Soil Mech. Found. Eng., Florence, Vol II, 583-586. Széchy, Κ., 1965. Der Grundbau, Vol. 2, Part 1—Die Baugrube. Springer-Verlag, Wien/ New York. Sällfors, G., 1975. Preconsolidation pressure of soft high-plastic clays. Ph. D. Thesis, Chalmers University of Technology, Gothenburg. Terzaghi, K., 1923. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akad. Wissensch., Wien, Sitzungsber. Bd. 132, H. 1, Mat.-Naturwissensch. Klasse. Terzaghi, K., 1925. Erdbaumechanik. Leipzig-Wien. Terzaghi, K., 1943. Theoretical soil mechanics. New York. Àstedt, Β., Weiner, L. & Holm, G., 1990. Friktionspâlar. Bärförmagans tillväxt med tiden. (Friction piles. Increase in bearing capacity with time). Preprint, Swedish Geotech. Inst., Linköping. CORRIGENDA Cross-references: Delete: page; line from bottom -, line from top + p. 247, bottom 65; 8- (see paragraph 6.3) 'Furthermore, the maximum can be 91; 10- in par. 6.2 established.' 99; 3- Section 5.3 p. 248, top 201; 16- Eq. (206) mz^ùfi +czQ) +kz = ßo (298) 229; 7- p. 192 0 0 234; 2+ (Figs. 165-166) p. 227,2- (Poulus, 1990) 241; 5+ Eq. (10) 248; 6+ Eqs. (299-300) Other corrections: 251; 11- Fig. 105c 259; 2- Eq. (286) page 264; 15+ Eq. (147) 77, 3+ (Schmertmann, 1955) 280; 11+ (Fig. 196) 79, 1- Mesne/Û/. (1990) 294; 18- Fig. 187 138; Ex. 13 1 (vert.): 1.5 (hor.) 305; 12+ (Fig. 218) 195; Fig. 139 q (in MPa) 314; 15+ (p. 127) c 217, 9+ (Davisson et al, 1965) 320; 8+ (Fig. 230) 220; Fig. 157 ·· equal to 4b ·· 321; 11- Fig. 232 p 221; Table 26 Initial I % 323; 8- Fig. 80 D 223;12+ 60 mm by 60 mm 323; 4- (p. 116) 223; Fig. 159 ·· equal to 4b ·· 329; 11+ Fig. 80 224; Fig. 160 ·· equal to Sb ·· 334; 1+ (Fig. 226) p 231,4- RandolphandClancy, 1993 376; 3- (Figs. 269-270) 214, Eq. (250) 389; 8+ Eqs. 365-366 400; 5+ Eq.(12) •0 401; 9- Eq. (12) dX ~ π W λ* π%ΐ/γ + δο 434; 9- Eq. (510) 266; 2+ 444; 6- Eq. (510) and Fig. 320 The displacement amplitude at D is obtained 445; 12- Eq.(513) when the force vector is pointing in the χ 449; 4- Eq. (513) direction. 488; 17+ (Fig. 353) 489; 1- Eq. (545) 490; 11+ Fig. 353 Add: p. 113, after (Fig. 82). Count the number of tetragons η covered by the loaded area. The stress is obtained by the expression Δσ= O.OOlnq. Developments in Geotechnical Engineering, 75 Foundation Engineering Sven Hansbo Lyckov2, Stocksund, S-18274, Sweden ELSEVIER Amsterdam - London - New York - Tokyo 1994

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.