ebook img

Forecasting Financial Markets Using Neural Networks: An Analysis of Methods and Accuracy PDF

82 Pages·1998·0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Forecasting Financial Markets Using Neural Networks: An Analysis of Methods and Accuracy

NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS FORECASTING FINANCIAL MARKETS USING NEURAL NETWORKS: AN ANALYSIS OF METHODS AND ACCURACY by Jason E. Kutsurelis September 1998 Principal Advisor: Katsuaki Terasawa Approved for public release; distribution is unlimited. FORECASTING FINANCIAL MARKETS USING NEURAL NETWORKS: AN ANALYSIS OF METHODS AND ACCURACY Jason E. Kutsurelis-Lieutenant, United States Navy B.S., United States Naval Academy, 1991 Master of Science in Management-September 1998 Principal Advisor: Katsuaki Terasawa, Department of Systems Management Associate Advisor: William R. Gates, Department of Systems Management sihT hcraeser senimaxe dna sezylana eht esu fo laruen skrowten sa a gnitsacerof .loot yllacificepS a laru esn'krow tyetniliba ot tciderp erutuf sdnert fo kcotS tekraM secidnIsi .detset ycaruccA si derapmoc tsniaga a lanoitidart gnitsacerof ,dohtem elpitlumraenil detalucla cs itcerro cgnie btsacero fs'ledo meh tf oytilibabor peh t,yllani F.sisylan anoisserger .sei tli algninob iiastbuiodr npeolcihW y l gnynoli fslesa iurkrcurb seo,inwydtreonehstiht gnitsacero fas askrowte nlarue ngnis uf oytilacitcar pdn aytilibisae feh tsenimrete dhcraeser draw dyeEbn okdr oe whnto psudli uybdu tssi h.Trotsev nliaudivid ne ihr tolfoot nyiletaG sih koob larueN skrowteN rof lai c.nganniitFsacero FsihT hcraes esretadilav eht krowfo yletaG dna sebircsed eht tnempoleved fo a laruen krowten taht deveihca a 3.39tnecrep tekram a gnitciderp fo ytilibaborp tnecrep 70.88 na dna ,esir tekram a gnitciderp fo ytilibaborp tsacerof ot ytilibapac eht evah od skrowten laruen taht dedulcnoc saw tI .005P&S eht ni pord e seu hmto rtfifen edblu orcotsev nliaudivid nei h,tdenia rytlrepo r fp,id nsatekr almaicnanif .l ogontitsace rs oiffhot KEYWORDS: Neural Networks, Finance, Time Series Analysis, Forecasting, Artificial Intelligence DOD TECHNOLOGY AREA: Modeling and simulation, Artificial Intelligence, Neural Networks REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 1998 Master’s Thesis 4. TITLE AND SUBTITLE FORECASTING FINANCIAL 5. FUNDING NUMBERS MARKETS USING NEURAL NETWORKS: AN ANALYSIS OF METHODS AND ACCURACY 6. AUTHOR(S) Kutsurelis, Jason E. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION Monterey CA 93943-5000 REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (maximum 200 words) yallacifi c.e lpo Sogtnitsace r ssoaakfrowt elnaru efe nose uhstezyla nd ansaenima xhecraes esrihT derapmo cs iycaruc c .Adetse ts isecidn Itekra Mkcot Sf osdner terutu ftcider po tytilib as'krowte nlaruen eh tf oytilibabor peh t,yllan i .Fsisylan anoisserge rraeni lelpitlu m,dohte mgnitsacero flanoitidar tatsniaga gnissucs iydlfei rybl neol i. hsWeitilibabo rlpanoitidn ogcni sduetalucl a scticerr ogcni etbsacer osf'ledom s askrowte nlarue ngnis uf oytilacitcar pdn aytilibisae feh tsenimrete dhcraese rsih t,yroeh tkrowte nlaruen draw d yEebn okdr oew hnto psudli uybdu tssi h.Trotsev nliaudivid nei hrt olfo ogtnitsacer oaf n iyletaG sih koob larueN skrowteN rof laicnaniF .gnitsaceroF sihT hcraeser setadilav eht krow fo yletaGdna sebircs etednhetmpole vfeod a lar ukernowte nta hdteveihca a 3.3 9yttnielcirbeapb o frgopnitciderpa dedulcnoc saw tI .005P&S eht ni pord tekram a gnitciderp fo ytilibaborp tnecrep 70.88 na dna ,esir tekram taht laruen skrowten od evah eht ytilibapac ot tsacerof laicnanif stekram ,dna fi ylreporp ,deniarteht .lo ogtnitsacer osfi h fteo seu hmto rtfifen edblu orcotsev nliaudividni 14. SUBJECT TERMS Neural Networks, Finance, Time Series Analysis, 15. NUMBER OF PAGES *123 Forecasting, Artificial Intelligence. 16. PRICE CODE 17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT Unclassified Unclassified Unclassified UL NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102 i Approved for public release; distribution is unlimited. FORECASTING FINANCIAL MARKETS USING NEURAL NETWORKS: AN ANALYSIS OF METHODS AND ACCURACY Jason E. Kutsurelis Lieutenant, United States Navy B.S., United States Naval Academy, 1991 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MANAGEMENT from the NAVAL POSTGRADUATE SCHOOL September 1998 Author: Jason E. Kutsurelis Approved by: Katsuaki Terasawa, Principal Advisor William R. Gates, Associate Advisor Reuben T. Harris, Chairman Department of Systems Management ii iii ABSTRACT .loo tgnitsacero f as askrowte nlarue nf oes ueh tsezylan adn asenimax ehcraese rsihT y llacific eapS l asr'uk erynotwitleinba ot tcid eerrput usfdnert fo kcot Stek rsaeMcidnIsi .detset ycaruccA si derapmoc tsniaga a lanoitidart gnitsacerof ,dohtem elpitlumraenil detalucla cs itcerro cgnie btsacero fs'ledo meh tf oytilibabor peh t,yllani F.sisylan anoisserger .sei tli algninob iiastbuiodr npeolcihW y l gnynoli fslesa iurkrcurb seo,inwydtreonehstiht gnitsacero fas askrowte nlarue ngnis uf oytilacitcar pdn aytilibisae feh tsenimrete dhcraeser draw dyeEbn okdr oe whnto psudli uybdu tssi h.Trotsev nliaudivid ne ihr tolfoot nyiletaG sih koob larueN skrowteN rof lai c.nganniitFsacero FsihT hcraes esretadilav eht krowfo yletaG dna sebircsed eht tnempoleved fo a laruen krowten taht deveihca a 3.39tnecrep tekram a gnitciderp fo ytilibaborp tnecrep 70.88 na dna ,esir tekram a gnitciderp fo ytilibaborp tsacerof ot ytilibapac eht evah od skrowten laruen taht dedulcnoc saw tI .005P&S eht ni pord e seu hmto rtfifen edblu orcotsev nliaudivid nei h,tdenia rytlrepo r fp,id nsatekr almaicnanif .l ogontitsace rs oiffhot iv v ST NEE LTFBNOAOTC I. INTRODUCTION ................................ ................................ ............................... 1 .A SLAOG ................................ ................................ ................................ .... 1 1. dnuorgkcaB ................................ ................................ .................. 2 2. sevitcejbO ................................ ................................ ..................... 6 3. noits ehucQrae seehRT ................................ ................................ . 6 4. snoitpmus sdA nsanoitatim i,LepocS ................................ ............. 7 5. ygolodoh t dewnMeai veerRutaretiL ................................ ............. 7 6. ydu tfnSooitazinagrO ................................ ................................ ... 8 II. KROWEM ALRAFCITERO EDWHNETAI VEERRUTARETIL .................... 11 .A ERUTARWEETIIVLER ................................ ................................ ....... 11 B. KROWEMA RLFACITEROEHT ................................ .......................... 13 III. YGOLODOHTEM ................................ ................................ ............................ 18 IV. NDOEI TTF CAOAETTLNALEDOSCERP ................................ .................... 33 .A KROW TEESNOLC ................................ ................................ .............. 33 B. K RTONWETCERNEP ................................ ................................ ......... 39 C. EL P NIROTAILESUNSLMIEELRDGOEMR ................................ ..... 47 D. YTILIBA BLOARNPOITIDNOC ................................ .......................... 53 V. NOITATERPR ESDTINNSAIY LAATNAAD ................................ ................. 59 VI. SNOITADNE MS MNDOONCIAESRULCNOC ................................ .............. 63 .A SNOISULCNOC ................................ ................................ .................... 63 B. SNOITADNEMMOCER ................................ ................................ ....... 63 vi XIDNE.PAPA LNTAOUII PTSD TRSRDUAEINOPRLHAGATETRIV PLOTS (NOT INCLUDED IN ELECTRONIC VERSION) XIDNEPPA.B DESSECO RG PNFWDEIOANR TRAPLSAIILTRAP TAUTPANDI (NOT INCLUDED IN ELECTRONIC VERSION) XIDNEPPA.C KRO WET SE ERONEDOLCOFCRCUOS (NOT INCLUDED IN ELECTRONIC VERSION) TSIL FOSECNEREFER ................................ ................................ .............................. 65 YHPARGOILBIB ................................ ................................ ................................ ......... 67 INITIAL DISTRIBUTION LIST (NOT INCLUDED IN ELECTRONIC VERSION) vii SERU GTFISOFIL .e1rugiF noru elNacigoloiB ................................ ................................ .................... 3 .e2rugiF ledo Mnorue NlaicifitrA ................................ ................................ ............ 4 .e3rugiF noitcn unFoitavit ccAitsigoL ................................ ................................ ..... 5 .e4rugiF noitcn unFoitavit cnAaissuaG ................................ ................................ ... 5 .e5rugiF gnis Unorue NlaicifitrA gninr aneoLitagaporpkcaB ................................ . 14 .e6rugiF tgenSini akrrTow te es rNono lorgCrnEiniarT ................................ ....... 34 .e7rugiF gniniarT rorrE no esolC krowteN tseTteS ................................ ............. 34 .e8rugiF tup nnIoitubir tsnrooCtcaF esolCkrowteN ................................ ............. 36 .e9rugiF l akurt ocewAstoelNC es o0l0C5 Pd&eStcid esrvP ................................ . 37 .e0r1ugiF Close Network Error ................................ ................................ .............. 38 .e1r1ugiF gntie nSkira o rt wrTngto enernciNrornEeiParT ................................ .... 40 .e2r1ugiF Training Error on Percent Network Test Set ................................ ........... 40 .e3r1ugiF Input Contribution Factors Percent Network ................................ .......... 42 .e4r1ugiF dlk eartt uonc.tweisctcFdvAereNerPP eg ntanh eCe cr0yru1aetDPu 005P & fSeoci rgPniso ldCna ................................ ................................ . 43 .e5r1ugiF Percent Network Error ................................ ................................ ........... 44 .e6r1ugiF d 0eS 0Ct&5cPid e .rlsPavu tsclAe dkorMow tlelNA ........................... 46 .e7r1ugiF ro rlre EdkorMow tleaNr uneoNitcid eeru PlganVis o0l0C5P&S trahC ................................ ................................ ................................ ...... 47 .e8r1ugiF eso l0C05P &lSaut c. Asdvetcide rlPed onMoissergeR ........................... 50 .e9r1ugiF nlrtoeoridrasorhsMECergeR ................................ ................................ 51 viii

Description:
This research examines and analyzes the use of neural networks as a forecasting tool. Specifically a neural network's ability to predict future trends of Stock Market Indices is tested. Accuracy is compared against a traditional forecasting method, multiple linear regression analysis. Finally, the p
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.