Fluid Mechanics and Its Applications Anders Hedegaard Hansen Fluid Power Systems A Lecture Note in Modelling, Analysis and Control Fluid Mechanics and Its Applications FoundingEditor RenéMoreau Volume 129 SeriesEditor AndréThess,GermanAerospaceCenter,InstituteofEngineering Thermodynamics,Stuttgart,Germany The purpose of this series is to focus on subjects in which fluid mechanics plays a fundamental role. As well as the more traditional applications of aeronautics, hydraulics,heatandmasstransferetc.,bookswillbepublisheddealingwithtopics, which are currently in a state of rapid development, such as turbulence, suspen- sions and multiphase fluids, super and hypersonic flows and numerical modelling techniques.Itisawidelyheldviewthatitistheinterdisciplinarysubjectsthatwill receive intense scientific attention, bringing them to the forefront of technological advancement. Fluids have the ability to transport matter and its properties as well as transmit force, therefore fluid mechanics is a subject that is particulary open to crossfertilisationwithothersciencesanddisciplinesofengineering.Thesubjectof fluidmechanicswillbehighlyrelevantinsuchdomainsaschemical,metallurgical, biologicalandecologicalengineering.Thisseriesisparticularlyopentosuchnew multidisciplinarydomains.Themedianlevelofpresentationisthefirstyeargraduate student.Sometextsaremonographsdefiningthecurrentstateofafield;othersare accessibletofinalyearundergraduates;butessentiallytheemphasisisonreadability andclarity. Springer and Professor Thess welcome book ideas from authors. Potential authorswhowishtosubmitabookproposalshouldcontactDr.MayraCastro, SeniorEditor,SpringerHeidelberg,e-mail:[email protected] Indexed by SCOPUS, EBSCO Discovery Service, OCLC, ProQuest Summon, GoogleScholarandSpringerLink Anders Hedegaard Hansen Fluid Power Systems A Lecture Note in Modelling, Analysis and Control AndersHedegaardHansen AAUEnergy AalborgUniversity Aalborg,Denmark ISSN 0926-5112 ISSN 2215-0056 (electronic) FluidMechanicsandItsApplications ISBN 978-3-031-15088-3 ISBN 978-3-031-15089-0 (eBook) https://doi.org/10.1007/978-3-031-15089-0 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNature SwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Withthislecturenotetheauthorstrivesforaneasilyaccessiblenotecoveringsome of the fundamental topics in fluid power technology. The main objectives are to enhance the reader’s learnings and depth of understandings in the exciting area of fluid power technology—and to achieve these goals, significant space is allo- cated for detailed derivations of formulas that form the basis of the theory. After successfulcompletionofthisnotethereaderknowshowtoproperly(i)designbasic fluidpowersystems,(ii)constructlumpedparametermodelsofsimplefluidpower systems, (iii) perform frequency analysis of fluid power components and systems and (iv) develop controllers for fluid power systems. The note mainly focusses on mathematical modelling and analysis of fluid power components and systems, i.e. practicalissuessuchasworkingprinciplesandconstructionofcomponentsarenot treated in details. Neither are system topology selection nor sizing of components usingdesignstandardstreatedinthisnote. The text is organised in four main parts that mildly overlap with each other: I Physics of Fluid, II Fluid Power Components, III Fluid Power Systems and IV LearningbyDoing. The topics in Part I Physics of Fluids focus on giving the reader a basic under- standing of fluid mechanics related to fluid power technologies. Special focus is placedonmodellingoffluidflowthroughrestrictions,viscousforcesinfluidflow andhowchangesinfluidmomentummayimpactcomponentsandsystems. InthePartIIFluidPowerComponents,themostimportantandcommonlyused componentsareintroduced.Emphasisisplacedoncomponentmodellingandusing thederivedmodelsthefunctionofeachcomponentisillustrated.Aftercompletion ofPartII,thereaderhasatoolboxofcomponentknowledgethatcanbeusedtoput togetherasystemthatcanperformacertaintask. ThethirdPartIIIFluidPowerSystemsgivesanin-depthpresentationofsystem modellingandsystemanalysisfollowedbyadiscussionofclosed-loopcontroltech- niquesapplicableinfluidpowersystems.Timedomainlumpedparametermodelsare developedforafewexamplesystems.Basedontimedomainmodels,linearmodels are constructed for the purposes of both frequency domain analysis and controller design.PartIIIconcludeswithachapterintroducinga“cookbook”approachtofluid v vi Preface powersystemdesign,whichallowsthedesignengineertoderiveaninitialsystem designinasystematicway. ThePartIVLearningbyDoingisthemostimportantinstrivingfortheobjectives of learning and understanding topics of fluid power technology. Part IV is filled withexercises,solutionexamplesandsolutionstrategies.Theauthortrulybelieves that the knowledge gained from this part of the note is vital for the fluid power technologystudent:Onemayreadthethreepriorpartsandgetanideaofthetheories andmethods,butfortrueandprofoundlearningonemustacquirethetheoryby(i) carefullystudyingofexplanatoryexamples,(ii)independentlysolveexercisesand (iii)becomeproficientintheartofevaluatingthevalidityandsoundnessofresults. Aalborg,Denmark AndersHedegaardHansen January2023 AssociateProfessor Contents 1 Introduction—It’sJustaGear .................................. 1 1.1 HydrodynamicsVersusHydrostatics ....................... 1 1.1.1 KineticPowerandHydrodynamics ................. 2 1.1.2 Pascal’sPrincipleandHydrostatics ................. 2 1.1.3 ThreeHydrostaticSystems ........................ 3 1.2 HydraulicSystemsVersusFluidPowerSystems ............. 6 1.3 UnitsinFluidPowerSystems ............................. 6 PartI PhysicsofFluid 2 FluidParameters .............................................. 11 2.1 Viscosity ............................................... 11 2.1.1 ViscosityModels ................................ 13 2.1.2 ViscousForceDuetoFluidFlow ................... 14 2.2 FluidDensityandCompressibility ......................... 17 2.2.1 EquationofStateforaFluid ...................... 17 2.2.2 PressureDependentDensityandBulkModulus ofFluid-AirMixture ............................. 18 2.2.3 Summery ....................................... 21 Reference ..................................................... 23 3 FluidsMechanics .............................................. 25 3.1 ConservationofMass .................................... 25 3.1.1 ControlVolumeApproach ........................ 26 3.1.2 ContinuityEquation—DifferentialForm ............ 28 3.2 MomentumofFluids—NewtonII.Law .................... 30 3.2.1 DifferentialForm—CartesianCoordinates ........... 31 3.2.2 MomentumEquationofaFluid .................... 35 3.2.3 ConservationofMomentum—ControlVolume Form ........................................... 36 3.3 Euler’sEquationsofMotion—InviscidFlow ................ 39 vii viii Contents 3.4 ViscousFlow ........................................... 39 3.4.1 Navier-StokesEquations—IncompressibleFluid ..... 40 4 FlowThroughRestriction ...................................... 43 4.1 TurbulentorLaminar—ReynoldsNumber .................. 43 4.2 FlowinaPipe .......................................... 44 4.2.1 FromNavier-StokesEquation ..................... 45 4.2.2 FromForceBalance .............................. 47 4.2.3 VolumeFlow .................................... 48 4.2.4 TurbulentFlowinPipes .......................... 49 4.2.5 SummaryofFlowinPipe ......................... 50 4.3 FlowinGaps—LeakageFlows ............................ 51 4.3.1 FromForceBalance .............................. 51 4.3.2 VolumeFlow .................................... 53 4.3.3 VelocityProfilefromNaiver-StokesEquation ........ 54 4.3.4 SummaryonLaminarFlowBetweenParallel Plates .......................................... 55 4.4 TheOrificeEquation .................................... 56 4.4.1 LaminarVersusTurbulentOrificeFlow ............. 59 Reference ..................................................... 61 PartII FluidPowerComponents 5 FluidPowerPumps ........................................... 65 5.1 DisplacementPumps .................................... 65 5.1.1 SinglePistonPump .............................. 66 5.2 TheGeneralPumpModel—SteadyState ................... 66 5.2.1 IdealPumpModel ............................... 67 5.2.2 Non-idealPumpModel ........................... 68 5.2.3 SummaryonGeneralPumpModel ................. 71 5.3 PumpTypes ............................................ 72 5.3.1 GearPumps ..................................... 72 5.3.2 VanePumps .................................... 73 5.3.3 PistonPumps ................................... 73 5.3.4 DiscreteDisplacementPumps ..................... 75 6 RotaryActuator—Motors ..................................... 77 6.1 MotorModels .......................................... 77 6.1.1 IdealMotorModel ............................... 77 6.1.2 Non-idealMotorModel .......................... 78 7 LinearActuators—Cylinders ................................... 81 7.1 DifferentialCylinder ..................................... 81 7.1.1 Modelling ...................................... 83 7.1.2 SteadyStateModel .............................. 86 7.1.3 Summary ....................................... 87 7.2 Multi-chamberCylinder .................................. 88 Contents ix 8 ControlElements—Valves ..................................... 91 8.1 GeneralValveModels ................................... 92 8.2 DirectionalValves ....................................... 92 8.2.1 CheckValve .................................... 93 8.2.2 On-OffValves ................................... 94 8.2.3 DirectionalSpoolValve .......................... 96 8.2.4 FlowForceonSpoolValve ........................ 99 8.2.5 ServoValves .................................... 102 8.3 PressureControlValves .................................. 108 8.3.1 PressureRelief .................................. 109 8.3.2 PressureReduction .............................. 111 8.3.3 PressureControl ................................. 113 8.4 FlowControlValves ..................................... 115 8.4.1 ThrottleValve ................................... 116 8.4.2 CaseIllustration—ThrottleValves .................. 117 8.4.3 PressureCompensatedFlowControlValve .......... 119 8.4.4 Pressure Compensated Flow Control Valve—Bypass .................................. 122 8.5 PressureCompensatedProportionalValves ................. 126 References .................................................... 127 9 Accumulators ................................................. 129 9.1 PistonAccumulator ..................................... 129 9.1.1 MassLoadedPistonAccumulators ................. 129 9.1.2 SpringLoadedPistonAccumulators ................ 131 9.1.3 GasLoadedPistonAccumulators .................. 131 9.2 BladderAccumulator .................................... 132 9.3 DiaphragmAccumulator ................................. 133 10 FluidPowerTransmissionLines ................................ 135 10.1 SteadyStateTransmissionLineModel ..................... 136 10.2 DynamicTransmissionLineModel ........................ 137 10.2.1 LumpedParameterModel ......................... 137 10.3 FluidPowerPipesandHoses ............................. 139 10.3.1 ConstructionofHoses ............................ 140 PartIII FluidPowerSystems 11 ModellingFluidPowerSystems ................................ 143 11.1 Models ................................................ 143 11.1.1 TimeDomainModel—Non-linear ................. 144 11.1.2 ReducedOrderModel ............................ 145 11.1.3 LinearModel—TimeDomain ..................... 146 11.2 Motor-ValveDrive ...................................... 148 11.2.1 TimeDomainModel ............................. 148