FLOATING GATE BASED LARGE-SCALE FIELD-PROGRAMMABLE ANALOG ARRAYS FOR ANALOG SIGNAL PROCESSING ADissertation Presentedto TheAcademicFaculty By ChristopherM.Twigg InPartialFulfillment oftheRequirementsfortheDegree DoctorofPhilosophy in ElectricalandComputerEngineering SchoolofElectricalandComputerEngineering GeorgiaInstituteofTechnology August2006 Copyright© 2006byChristopherM.Twigg FLOATING GATE BASED LARGE-SCALE FIELD-PROGRAMMABLE ANALOG ARRAYS FOR ANALOG SIGNAL PROCESSING Approvedby: Dr.PaulE.Hasler,Advisor Dr.AaronD.Lanterman Professor, School ofECE Professor, School ofECE GeorgiaInstitute ofTechnology GeorgiaInstitute ofTechnology Atlanta,GA Atlanta,GA Dr.DavidV.Anderson Dr.MarkT.Smith Professor, School ofECE Professor, School ofICT GeorgiaInstitute ofTechnology Swedish RoyalInstitute ofTechnology Atlanta,GA Kista,Sweden Dr.JohnB.Peatman Professor, School ofECE GeorgiaInstitute ofTechnology Atlanta,GA DateApproved: June2006 ACKNOWLEDGMENTS I would like to thank everyone who helped me along the way from my advisor, Paul Hasler, to my colleagues within the CADSP research group. I would also like to thank my friends and family who encouraged me throughoutthe process. However, my greatest thanks goes to my ever loving wife, Shannon, who has endured many things throughout my graduate life that I have no doubt caused. I could never have managed through these lastfewyearswithoutherlove,support,andmostofall,patience. iii TABLE OF CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi CHAPTER1 RECONFIGURABLEANDPROGRAMMABLEANALOG . . 1 1.1 AnalogProcessing,thePastandtheFuture . . . . . . . . . . . . . . . . . 1 1.2 TheFPAA Advantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 General FPAAArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Large-Scale FPAAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 CHAPTER2 FLOATING-GATETRANSISTORS . . . . . . . . . . . . . . . . 8 2.1 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 FloatingGateTransistorArrays . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 SwitchCharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 SwitchProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 IndirectProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7 ModifiedTunnelingJunctions . . . . . . . . . . . . . . . . . . . . . . . . 24 2.8 ImprovingIsolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CHAPTER3 PROGRAMMABLEVOLTAGE/ CURRENT REFERENCE . . 29 3.1 ArchitectureandTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 TemperatureDependence . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 Long-TermRetention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 CHAPTER4 FIRST GENERATIONFLOATINGGATEFPAA . . . . . . . . 38 4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.1 CAB ComponentSelection . . . . . . . . . . . . . . . . . . . . . 39 4.1.2 FloatingGateTransistorArrayStructure . . . . . . . . . . . . . . 42 4.2 SynthesizedCircuitsandResults . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 Follower,Low-PassFilter . . . . . . . . . . . . . . . . . . . . . . 44 4.2.2 Second-Order Section . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 CapacitivelyCoupledCurrent Conveyor . . . . . . . . . . . . . . 47 4.2.4 Third-OrderLadderFilter . . . . . . . . . . . . . . . . . . . . . . 50 4.3 ObservationsandConclusions . . . . . . . . . . . . . . . . . . . . . . . . 52 iv CHAPTER5 SECOND GENERATIONFLOATINGGATEFPAA . . . . . . . 53 5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3 SynthesizedCircuitsandResults . . . . . . . . . . . . . . . . . . . . . . 59 5.3.1 Follower,Low-PassFilter . . . . . . . . . . . . . . . . . . . . . . 60 5.3.2 CapacitivelyCoupledSummation . . . . . . . . . . . . . . . . . 62 5.3.3 CapacitivelyCoupledDifference . . . . . . . . . . . . . . . . . . 64 5.3.4 ProgrammableSwitchFabricCurrent Source . . . . . . . . . . . 66 5.3.5 ProgrammableVoltageReference . . . . . . . . . . . . . . . . . . 67 5.3.6 EnvelopeDetector . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.7 Band-PassResonator . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 ObservationsandConclusions . . . . . . . . . . . . . . . . . . . . . . . . 71 CHAPTER6 HIGHPERFORMANCEFPAA . . . . . . . . . . . . . . . . . . 76 6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Low-PassFilterImplementationandResults . . . . . . . . . . . . . . . . 80 CHAPTER7 LARGE-SCALE FPAAS,THE NEXTGENERATION . . . . . 83 7.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.2 TheChannelSlice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 CHAPTER8 THE FPAAINEDUCATION . . . . . . . . . . . . . . . . . . . . 90 8.1 First-GenerationEducationalFPAABoard . . . . . . . . . . . . . . . . . 91 8.2 Second-GenerationEducationalFPAA Board . . . . . . . . . . . . . . . . 96 8.3 Next-GenerationEducationalFPAA Board . . . . . . . . . . . . . . . . . 100 CHAPTER9 FPAADIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . 103 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 v LIST OF TABLES Table3.1 Reference VoltageDriftData . . . . . . . . . . . . . . . . . . . . . . 36 Table5.1 ExtractedParasiticandDrawnCapacitances. . . . . . . . . . . . . . . 59 vi LIST OF FIGURES Figure1.1 DSP power consumption trend compared to power efficient analog equivalentfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure1.2 Signalprocessinginthereal world. . . . . . . . . . . . . . . . . . . . 2 Figure1.3 ComparisonofcustomanalogICandFPAA designflows. . . . . . . . 3 Figure1.4 GenericFPAAarchitecture. . . . . . . . . . . . . . . . . . . . . . . . 4 Figure1.5 ExampleFPAAswitchandprogrammableelement. . . . . . . . . . . 5 Figure1.6 ExampleFPAAswitchandprogrammableelementusingfloatinggate transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure2.1 Topviewandcross-sectionlayoutofafloatinggatetransistor. . . . . . 9 Figure2.2 Floatinggatetransistorschematic. . . . . . . . . . . . . . . . . . . . 10 Figure2.3 Gate sweep measurements showing the programmability of floating gatetransistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure2.4 Conduction band diagram depicting the tunneling process across an oxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure2.5 Conduction band diagram depicting hot electron injection across an nFETchannel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure2.6 Timingdiagramshowingthestepsinvolvedinahotelectroninjection pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure2.7 Floatinggateinjectionefficiency. . . . . . . . . . . . . . . . . . . . . 14 Figure2.8 Floatinggatetransistorsarrangedintoanarray forprogramming. . . . 15 Figure2.9 Floatinggatetransistorisolationinarrays. . . . . . . . . . . . . . . . 16 Figure2.10 Gatesweepsdepictingthe“on”and“off”statesoffloatinggateswitches. 17 Figure2.11 Comparisonofswitchresistancefor variousdevices. . . . . . . . . . . 18 Figure2.12 Exploitingthesubstratecouplingcapacitorforswitchprogramming. . 21 Figure2.13 Directversusindirectfloatinggatetransistorprogramming. . . . . . . 23 Figure2.14 Layoutforafloatinggatetransistorusingwelltunneling. . . . . . . . 25 Figure2.15 Gatesweepdatashowingwelltunnelingresults. . . . . . . . . . . . . 25 vii Figure2.16 Layoutforafloatinggatetransistorusingpoly-polycaptunneling. . . 26 Figure2.17 Switchelementusingindirectprogramming. . . . . . . . . . . . . . . 27 Figure2.18 Gatesweepresultsfromtheindirectlyprogrammedswitchtopology. . 28 Figure3.1 Programmablefloatinggatebasedreference. . . . . . . . . . . . . . . 30 Figure3.2 Programmablereference schematicshowingprogrammingswitches. . 32 Figure3.3 Reference programmabilityandaccuracy. . . . . . . . . . . . . . . . . 33 Figure3.4 Reference voltagechangeasafunctionoftemperature. . . . . . . . . 34 Figure3.5 Longtermreference voltagedriftatlowandhightemperatures. . . . . 37 Figure4.1 RASP 1.5diephotograph. . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure4.2 RASP 1.xFPAA architectureandCABcomponents. . . . . . . . . . . 39 Figure4.3 ExampleOTAimplementedusingtransistorswithinanFPAA. . . . . . 40 Figure4.4 RASP 1.xFPAA CABcomponents. . . . . . . . . . . . . . . . . . . . 41 Figure4.5 Floatinggatetransistorarray architectureforprogramming. . . . . . . 42 Figure4.6 G -C low-passfilterimplementedontheRASP 1.5. . . . . . . . . . . 44 M Figure4.7 FrequencyresponseofG -Clow-passfilter. . . . . . . . . . . . . . . 45 M Figure4.8 Second-ordersectionimplementedontheRASP 1.5. . . . . . . . . . . 46 Figure4.9 Frequencyresponseofthesecond-ordersectioncircuit. . . . . . . . . 47 Figure4.10 Capacitivelycoupledcurrentconveyor(C4)band-passelement. . . . . 48 Figure4.11 FrequencyresponseoftheC4 band-passelement. . . . . . . . . . . . 49 Figure4.12 Third-orderladdercircuitimplementedontheRASP 1.5. . . . . . . . 50 Figure4.13 Frequencyresponseofthethird-orderladdercircuit. . . . . . . . . . . 51 Figure5.1 RASP 2.7diephotograph. . . . . . . . . . . . . . . . . . . . . . . . . 53 Figure5.2 Thetwo-dimensionalCAB array,RASP 2.xFPAA architecture. . . . . 54 Figure5.3 TheRASP 2.5CAB arraywithrowandcolumnaddressingoffsets. . . 55 Figure5.4 TheRASP 2.7CAB arraywithrowandcolumnaddressingoffsets. . . 55 Figure5.5 SwitchplotdiagramusedtomapcircuitstoFPAACABs. . . . . . . . 57 Figure5.6 Characterizationofdrawncapacitorsandparasiticroutingcapacitance. 59 viii Figure5.7 Low-passfollowerdatafromtheRASP 2.7. . . . . . . . . . . . . . . 61 Figure5.8 Cornerfrequencyrelationshiptosub-thresholdOTAbiascurrents. . . 61 Figure5.9 AcapacitivelycoupledsummationcircuitusingapFETleakageresis- tance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Figure5.10 Summationcircuitidealandmeasuredresults. . . . . . . . . . . . . . 63 Figure5.11 Summationcircuitusingtheswitchfabricasaresistance. . . . . . . . 64 Figure5.12 Capacitivelycoupleddifferencecircuit. . . . . . . . . . . . . . . . . . 65 Figure5.13 Frequencyresponseofthecapacitivedifferenceamplifier. . . . . . . . 65 Figure5.14 Currentsource/reference builtwithinswitchfabric. . . . . . . . . . . 66 Figure5.15 Reference voltageconstructedusingswitchfabriccurrentsource. . . . 67 Figure5.16 Voltagereference characterizationusingavoltagebiasedpFET. . . . . 68 Figure5.17 Voltagereference outputsetbya switchfabriccurrentsource. . . . . . 68 Figure5.18 Synthesizedenvelopedetectorcircuit. . . . . . . . . . . . . . . . . . . 69 Figure5.19 Programmingthesynthesizedenvelopedetector’stimeconstant. . . . . 70 Figure5.20 Measuredminimumdetector’sresponsetovariousfrequencies. . . . . 70 Figure5.21 Synthesizedband-passfilterusinganOTAresonatortopology. . . . . 71 Figure5.22 Switchisolationvariationacrossdie. . . . . . . . . . . . . . . . . . . 72 Figure5.23 Switchisolationbreakpointhistogram. . . . . . . . . . . . . . . . . . 74 Figure6.1 High-performanceFPAAdiephotograph. . . . . . . . . . . . . . . . . 76 Figure6.2 High-performanceFPAAarchitecture. . . . . . . . . . . . . . . . . . 77 Figure6.3 Biquadcircuittopologyusedforthehigh-performanceFPAACAB. . . 78 Figure6.4 Reconfigurabilityinthehigh-performanceFPAAbiquad. . . . . . . . 79 Figure6.5 Low-passfiltersynthesizedusingthebiquadCAB. . . . . . . . . . . . 80 Figure6.6 Biquad synthesized low-pass filter frequency responses for several loadcapacitances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure7.1 RASP 3.0diephotograph. . . . . . . . . . . . . . . . . . . . . . . . . 83 Figure7.2 Commonalgorithmstepsinaudiosignalprocessing. . . . . . . . . . . 84 ix Figure7.3 TheRASP 3.0FPAA architecture. . . . . . . . . . . . . . . . . . . . 85 Figure7.4 IndirectlyprogrammeddifferentialswitchusedintheRASP 3.0. . . . 86 Figure7.5 Differentialbiquadcircuittopology. . . . . . . . . . . . . . . . . . . . 87 Figure8.1 EducationallaboratorysetupusingtheRASP 2.5FPAA. . . . . . . . . 91 Figure8.2 Laboratory setup used to prototype and design analog circuits on an FPAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Figure8.3 RASP 2.5FPAA boardinterface commands. . . . . . . . . . . . . . . 93 Figure8.5 CharacterizingapFETusingtheeducationalsetup. . . . . . . . . . . 95 Figure8.6 EducationallaboratorysetupusingtheRASP 2.7FPAA. . . . . . . . . 96 Figure8.7 PortableFPAAlaboratoryinabox. . . . . . . . . . . . . . . . . . . . 97 Figure8.9 Xcircuitschematiccapturetool. . . . . . . . . . . . . . . . . . . . . . 98 Figure8.10 ComparatorcircuitsynthesizedontheRASP 2.7. . . . . . . . . . . . 99 Figure8.11 Results from a simple comparator synthesized using the RASP 2.7 FPAAboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Figure8.12 ResultsfromafollowersynthesizedontheRASP 2.7IC. . . . . . . . 101 Figure8.13 FutureeducationallaboratorysetupusingtheplannedRASP 2.8FPAA.101 Figure9.1 RoadmapfortheRASP FPAA andbeyond. . . . . . . . . . . . . . . 103 x
Description: