ebook img

Flexible energy conversion and storage devices PDF

501 Pages·2018·21.939 MB·English
by  DaiLimingZhiChunyi
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flexible energy conversion and storage devices

FlexibleEnergyConversion andStorageDevices Flexible Energy Conversion and Storage Devices EditedbyChunyiZhiandLimingDai Editors AllbookspublishedbyWiley-VCHare carefullyproduced.Nevertheless,authors, Prof.ChunyiZhi editors,andpublisherdonotwarrantthe CityUniversityofHongKong informationcontainedinthesebooks, DepartmentofMaterialsScience includingthisbook,tobefreeoferrors. andEngineering Readersareadvisedtokeepinmindthat 83TatCheeAvenue statements,data,illustrations,procedural Kowloon detailsorotheritemsmayinadvertently HongKong beinaccurate. LibraryofCongressCardNo.:appliedfor Dr.LimingDai CaseWesternReserveUniversity MacromolecularScienceandEngineering BritishLibraryCataloguing-in-Publication 10900EuclidAvenue Data Cleveland,OH44406 Acataloguerecordforthisbookisavail- UnitedStates ablefromtheBritishLibrary. CoverImage:©FGorgun/iStockphoto Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutscheNation- albibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>. ©2018Wiley-VCHVerlagGmbH&Co. KGaA,Boschstr.12,69469Weinheim, Germany Allrightsreserved(includingthoseof translationintootherlanguages).Nopart ofthisbookmaybereproducedinany form–byphotoprinting,microfilm,orany othermeans–nortransmittedortrans- latedintoamachinelanguagewithout writtenpermissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobeconsidered unprotectedbylaw. PrintISBN:978-3-527-34253-2 ePDFISBN:978-3-527-34260-0 ePubISBN:978-3-527-34262-4 oBookISBN:978-3-527-34263-1 Typesetting SPiGlobal,Chennai,India PrintingandBinding Printedonacid-freepaper 10 9 8 7 6 5 4 3 2 1 v Contents Preface xiii 1 FlexibleAll-Solid-StateSupercapacitorsandMicro-Pattern Supercapacitors 1 YuqingLiu,ChenZhao,ShayanSeyedin,JoselitoRazal,andJunChen 1.1 Introduction 1 1.2 PotentialComponentsandDeviceArchitectureforFlexible Supercapacitors 4 1.2.1 FlexibleElectrodeMaterials 5 1.2.1.1 CarbonMaterials 5 1.2.1.2 ConductingPolymers 6 1.2.1.3 CompositeMaterials 7 1.2.2 Solid-StateElectrolytes 7 1.2.3 DeviceArchitectureofFlexibleSupercapacitor 8 1.3 FlexibleSupercapacitorDeviceswithSandwichedStructures 10 1.3.1 FreestandingFilmsBasedFlexibleDevices 10 1.3.2 FlexibleSubstrateSupportedElectrodesBasedDevices 14 1.4 FlexibleMicro-SupercapacitorDeviceswithInterdigitated Architecture 18 1.4.1 InsituSynthesisofActiveMaterialsonPre-PatternedSurfaces 18 1.4.2 DirectPrintingofActiveMaterials 21 1.4.3 PatterningofWell-DevelopedFilmElectrodes 24 1.5 PerformanceEvaluationandPotentialApplicationofFlexible Supercapacitors 27 1.5.1 PerformanceEvaluationofFlexibleSupercapacitors 28 1.5.2 IntegrationofFlexibleSupercapacitors 29 1.6 ConclusionsandPerspectives 32 References 32 2 Fiber/Yarn-BasedFlexibleSupercapacitor 37 YangHuangandChunyiZhi 2.1 Introduction 37 2.2 SupercapacitorwithIntrinsicConductiveFiber/Yarn 40 2.2.1 CarbolicFiber/Yarn-BasedSupercapacitor 41 2.2.2 MetallicFiber/Yarn-BasedSupercapacitor 44 vi Contents 2.2.3 HybridConductiveFiber/Yarn-BasedSupercapacitor 48 2.3 SupercapacitorswithIntrinsicNonconductiveFiber/Yarn 51 2.3.1 Fiber/YarnModifiedbyCarbonMaterials 52 2.3.2 Fiber/YarnModifiedbyMetallicMaterials 54 2.4 IntegratedElectronicTextiles 57 2.5 ConclusionandOutlook 61 References 62 3 FlexibleLithiumIonBatteries 67 XuliChenandYingyingMa 3.1 OverviewofLithiumIonBattery 67 3.1.1 GeneralPrinciple 67 3.1.2 Cathode 70 3.1.2.1 LiCoO withLayeredStructure 70 2 3.1.2.2 LiMn O withaSpinelStructure 70 2 4 3.1.2.3 LiFePO withanOlivineStructure 70 4 3.1.3 Anode 71 3.1.3.1 CarbonaceousAnodes 71 3.1.3.2 MetalAlloyAnodes 71 3.1.4 Electrolyte 72 3.2 Planar-ShapedFlexibleLithiumIonBatteries 73 3.2.1 BendablePlanarLithiumIonBatteries 73 3.2.1.1 BendableCarbon-BasedPlanarLithiumIonBattery 73 3.2.1.2 ThinMetalMaterial-BasedLithiumIonBattery 77 3.2.1.3 Polymer-BasedLithiumIonBattery 79 3.2.1.4 SpecialStructuralDesign-BasedFlexibleLithium–IonBattery 82 3.2.2 StretchablePlanarFlexibleLithiumIonBatteries 84 3.3 Fiber-ShapedFlexibleLithiumIonBatteries 87 3.3.1 BendableFiber-ShapedLithiumIonBattery 87 3.3.2 StretchableFiber-ShapedLithiumIonBattery 93 3.4 Perspective 94 References 95 4 FlexibleSodiumIonBatteries:FromMaterialstoDevices 97 ShengyangDong,PingNie,andXiaogangZhang 4.1 IntroductiontoFlexibleSodiumIonBatteries(SIBs) 97 4.2 TheKeyScientificIssuesofFlexibleSIBs 98 4.2.1 DesignofAdvancedActive-Materials 99 4.2.2 DesignofFlexibleSubstratesandElectrodes 99 4.2.3 DevelopingNovelProcessingTechnologies 101 4.3 DesignofAdvancedMaterialsforFlexibleSIBs 101 4.3.1 InorganicAnodeMaterialsforFlexibleSIBs 101 4.3.2 InorganicCathodeMaterialsforFlexibleSIBs 110 4.3.3 OrganicMaterialsforFlexibleSIBs 114 4.3.4 OtherMajorComponentsforFlexibleSIBs(Electrolyte,Separators, etc.) 115 4.4 DesignofFullCellforFlexibleSIBs 117 Contents vii 4.5 SummaryandOutlook 121 References 123 5 1Dand2DFlexibleCarbonMatrixMaterialsforLithium–Sulfur Batteries 127 TianyiWang,YushuLiu,DaweiSu,andGuoxiuWang 5.1 Introduction 127 5.2 TheWorkingMechanismandChallengesofLi–SBatteries 128 5.3 FlexibleCathodeHostsforLithium–SulfurBatteries 129 5.4 ElectrolyteMembranesforFlexibleLi–SBatteries 138 5.4.1 SolidPolymerElectrolytesforFlexibleLi–SBatteries 139 5.4.2 GelPolymerElectrolytesforFlexibleLi–SBatteries 142 5.4.3 CompositePolymerElectrolytesforFlexibleLi–SBatteries 143 5.5 SeparatorforFlexibleLi–SBatteries 144 5.6 Summary 148 References 149 6 FlexibleElectrodesforLithium–SulfurBatteries 155 Jia-QiHuang,MengZhao,RuiXu,andQiangZhang 6.1 Introduction 155 6.2 Lithium–SulfurBatteryandFlexibleCathode 156 6.2.1 Lithium–SulfurBattery 156 6.2.2 FlexibleCathodeforLithium–SulfurBattery 156 6.3 TheFlexibleCathodeofLithium–SulfurBattery 157 6.3.1 FlexibleCathodeBasedonOne-dimensionalMaterials 157 6.3.1.1 FlexibleCathodeBasedonCNTs 157 6.3.1.2 FlexibleCathodeBasedonCarbonNanofibers 163 6.3.1.3 FlexibleCathodeBasedonPolymerFibers 166 6.3.2 FlexibleCathodeBasedonTwo-dimensionalMaterials 167 6.3.2.1 FlexibleCathodeBasedonGraphenePaper 167 6.3.2.2 FlexibleCathodeBasedonGrapheneFoam 169 6.3.3 FlexibleCathodeBasedonThree-dimensionalMaterials 172 6.3.3.1 FlexibleCathodeBasedonThree-dimensionalCarbonFoam Materials 172 6.3.3.2 FlexibleCathodeBasedonCarbon/BinderCompositesMaterials 174 6.3.3.3 FlexibleCathodeBasedonThree-dimensionalMetalMaterials 176 6.4 SummaryandProspect 177 References 178 7 FlexibleLithium–AirBatteries 183 Qing-ChaoLiu,Zhi-WenChang,KaiChen,andXin-BoZhang 7.1 MotivationfortheDevelopmentofFlexibleLithium–Air Batteries 183 7.2 StateoftheArtforFlexibleLithium–AirBatteries 184 7.2.1 OverviewofFlexibleEnergyStorageandConversionDevices 184 7.2.2 OverviewofFlexibleLithium–AirBatteries 185 viii Contents 7.2.2.1 SimilaritiesBetweenCoinCell/SwagelokBatterieswithFlexible Battery 187 7.2.2.2 DifferencesBetweenCoinCell/SwagelokBatterieswithFlexible Battery 188 7.2.3 CurrentStatusofFlexibleLithium–AirBattery 190 7.2.3.1 PlanarBattery 190 7.2.3.2 Cable-typeBattery 199 7.2.3.3 Woven-typeBatteryPack 202 7.2.3.4 BatteryArrayPack 203 7.3 ChallengesandFutureWorkonFlexibleLithium–AirBatteries 206 7.4 ConcludingRemarks 207 References 208 8 NanodielectricElastomersforFlexibleGenerators 215 Li-JuanYinandZhi-MinDang 8.1 Introduction 215 8.2 Electro-MechanicalPrinciples 216 8.2.1 Electro-MechanicalConversion 216 8.2.2 EquationsofDEGenerators 217 8.3 IncreasingthePerformanceofDielectricElastomersfromthe MaterialsPerspective 218 8.3.1 IncreasingtheRelativePermittivityofDEs 219 8.3.1.1 ElastomerComposites 219 8.3.1.2 ElastomerBlends 222 8.3.1.3 ChemicalModification 223 8.3.2 DecreasingYoung’sModulus 225 8.3.3 ComplexNetworkStructure 225 8.4 CircuitsandElectro-MechanicalCouplingMethods 227 8.5 ExamplesofDielectricElastomerGenerators 230 8.6 ConclusionandOutlook 231 Acknowledgments 232 References 232 9 FlexibleDye-SensitizedSolarCells 239 Byung-ManKim,Hyun-GyuHan,Deok-HoRoh,JunhyeokPark, KwangMinKim,Un-YoungKim,andTae-HyukKwon 9.1 Introduction 239 9.2 MaterialsandFabricationofElectrodesforFDSCs 242 9.2.1 Photo-electrode 242 9.2.1.1 FlexibleSubstrateforPhoto-electrode 242 9.2.1.2 Nanostructured-photoactiveFilm 243 9.2.1.3 Fiber-typeFDSCs 249 9.2.2 Counter-electrode 251 9.3 SensitizersinFDSCsandThinPhotoactiveFilmDSCs 254 9.3.1 State-of-the-ArtReviewofSensitizersinFDSCs 254 9.3.2 SensitizersinThinPhotoactiveFilmDSCs 258 9.4 ElectrolyteandHole-TransportingMaterialsforFDSCs 270 Contents ix 9.5 ConclusionandOutlook 276 References 278 10 Self-assemblyinFabricationofSemitransparentand Meso–PlanarHybridPerovskitePhotovoltaicDevices 283 RaviK.Misra,SigalitAharon,MichaelLayani,ShlomoMagdassi,andLiozEtgar 10.1 Introduction 283 10.1.1 SemitransparentPerovskiteSolarCellsThroughSelf-assemblyof PerovskiteinOneStep 285 10.1.1.1 CellArchitectureandMorphology 286 10.1.1.2 TransparencyandPhotovoltaicPerformanceoftheCells 288 10.1.1.3 RecombinationBehavioroftheChargesinCells 291 10.1.2 Mesoporous–PlanarHybridPerovskiteDevicesThrough Mesh-assistedSelf-assemblyofMesoporous-TiO 292 2 10.1.2.1 CellArchitectureandMorphology 293 10.1.2.2 PhotovoltaicPerformanceoftheSolarCells 297 10.1.2.3 StudyofRecombinationBehaviorThroughChargeExtraction 300 10.2 SummaryandFuturePerspective 302 References 302 11 FlexibleOrganicSolarCells 305 LinHu,YouyuJiang,andYinhuaZhou 11.1 Introduction 305 11.1.1 WorkingPrinciple 306 11.1.2 PerformanceCharacterizationofOSCs 307 11.1.3 DeviceStructure 308 11.1.3.1 ConventionalDeviceStructure 308 11.1.3.2 InvertedDeviceStructure 308 11.2 ActiveLayer 308 11.2.1 DonorMaterials 310 11.2.1.1 Poly(Phenylenevinylene)(PPV)andPolythiophene(PT) Derivatives 310 11.2.1.2 D–AConjugatedPolymers 311 11.2.2 AcceptorMaterials 313 11.2.2.1 FullereneDerivatives 313 11.2.2.2 Non-fullereneAcceptors 315 11.3 FlexibleElectrode 317 11.3.1 ConductivePolymer(PEDOT:PSS) 317 11.3.2 MetalNanowiresandGrids 318 11.3.3 HybridCarbonMaterial 319 11.4 InterfacialLayer 320 11.4.1 HoleTransportingLayer(HTL) 320 11.4.2 ElectronTransportingLayer(ETL) 320 11.5 TandemOrganicSolarCells 321 11.5.1 InterconnectingLayer 322 11.5.2 LowBandgapPolymerSub-cell 324 11.6 FabricationTechnologyforFlexibleOrganicSolarCells 326 x Contents 11.7 Summary 328 References 329 12 FlexibleQuantumDotSensitizedSolarCells 339 YueliLiu,KeqiangChen,ZhuoyinPeng,andWenChen 12.1 Introduction 339 12.2 BasicConcepts 340 12.2.1 QuantumDots(QDs) 340 12.2.1.1 QuantumSizeEffect 341 12.2.1.2 MultipleExcitonGeneration 341 12.2.1.3 UltrafastElectronTransfer 342 12.2.1.4 LargeSpecificSurfaceArea 343 12.2.2 QuantumDotsSensitizedSolarCells(QDSSCs) 344 12.2.2.1 SchematicoftheStructureandChargeCirculationofQDSSCs 344 12.2.2.2 EvaluationofthePhotovoltaicPerformancesofQDSSCs 345 12.3 DevelopmentoftheFlexibleQDSSCs 347 12.3.1 ChoosingoftheTypesofQDs 347 12.3.1.1 Cd-basedQDs 347 12.3.1.2 Pb-basedQDs 348 12.3.1.3 Cu-basedQDs 349 12.3.2 FabricationoftheFlexiblePhoto-anodeFilms 350 12.3.3 TiO -BasedPhoto-anodes 351 2 12.3.3.1 Photo-anodesofTiO Nanoparticles 351 2 12.3.3.2 Photo-anodesofTiO NanoarrayStructures 352 2 12.3.3.3 DesigningofNovelTiO ArchitectureasPhoto-anodes 354 2 12.3.4 ZnObasedPhoto-anodes 354 12.3.5 OtherMetalOxideBasedPhoto-anodes 355 12.3.6 DevelopmentoftheSensitizationMethod 355 12.3.6.1 InsituSensitizationTechniques 356 12.3.6.2 ExsituTechniques 358 12.3.6.3 Co-sensitizationTechniques 360 12.3.7 InterfacialEngineeringinQDSSCs 360 12.3.7.1 SurfacePassivationbyLarge-bandgapSemiconductors 361 12.3.7.2 SurfacePassivationbyMetalOxides 361 12.3.7.3 SurfacePassivationbyMolecularDipoles 362 12.3.7.4 SurfacePassivationbyDyeMolecules 362 12.3.7.5 SurfacePassivationbyMolecularRelays 362 12.3.7.6 CombinedInterfacialEngineeringMethods 363 12.3.8 OptimizationoftheCounterElectrodes 363 12.3.8.1 NobleMetalCounterElectrodes 365 12.3.8.2 CarbonCounterElectrodes 365 12.3.8.3 MetallicCompoundCounterElectrodes 366 12.3.8.4 PolymerCounterElectrodes 370 12.4 ConclusionandFutureOutlook 370

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.