ebook img

Fixed points of the SRG evolution and the on-shell limit of the nuclear force PDF

3.6 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fixed points of the SRG evolution and the on-shell limit of the nuclear force

Fixed points of the SRG evolution and the on-shell limit of the nuclear force E.RuizArriolaa,S.Szpigelb,V.S.Timo´teo1c aDepartamentodeF´ısicaAto´mica,MolecularyNuclearandInstitutoCarlosIdeFisicaTeo´ricayComputacional UniversidaddeGranada,E-18071Granada,Spain bCentrodeRa´dio-AstronomiaeAstrof´ısicaMackenzie,EscoladeEngenharia,UniversidadePresbiterianaMackenzie 01302-907,Sa˜oPaulo,SP,Brasil cGrupodeO´pticaeModelagemNume´rica-GOMNI,FaculdadedeTecnologia-FT,UniversidadeEstadualdeCampinas-UNICAMP 13484-332,Limeira,SP,Brasil 6 Abstract 1 0 We study the infrared limit of the similarity renormalization group (SRG) using a simple toy model for the nuclear 2 force aiming to investigate the fixed points of the SRG evolution with both the Wilson and the Wegner generators. r Weshowhowafullydiagonalinteractionatthesimilaritycutoffλ→0maybeobtainedfromtheeigenvaluesofthe p hamiltonian and quantify the diagonalness by means of operator norms. While the fixed points for both generators A areequivalentwhennobound-statesareallowedbytheinteraction, thedifferencesarisingfromthepresenceofthe 8 Deuteron bound-state can be disentangled very clearly by analyzing the evolved interactions in the infrared limit 2 λ → 0 on a finite momentum grid. Another issue we investigate is the location on the diagonal of the hamiltonian in momentum-space where the SRG evolution places the Deuteron bound-state eigenvalue once it reaches the fixed ] h point. This finite momentum grid setup provides an alternative derivation of the celebrated trace identities, as a by t product. ThedifferenteffectsduetoeithertheWilsonortheWegnergeneratorsonthebindingenergiesofA=2,3,4 - l systems are investigated and related to the ocurrence of a Tjon-line which emerges as the minimum of an avoided c u crossingbetweenEα = 4Et −3Ed andEα = 2Et. Allinfraredfeaturesoftheflowequationsareillustratedusingthe n toymodelforthetwo-nucleonS-waves. [ 2 v 1. Introduction 0 6 The similarity renormalization group (SRG) approach was proposed independently by Glazek and Wilson and 3 Wegner[1–4]andwasinitiallyappliedinsolid-statephysicstosimplifymany-particlerandomlydisorderedsystems. 2 Since the solution of a many-particle problem requires diagonalization of the hamiltonian, a transformation which 0 . makesitmorediagonalwouldbeofgreatapplicability,speciallyiftheeigenvaluesarepreserved. Thisideawasthen 1 appliedbyWegnerinordertosuppresstheoff-diagonalmatrix-elementsofthehamiltonianbymeansofunitarytrans- 0 formations[3].Theunitarityofthetransformationsensuresisospectralityandthegeneratorofthetransformationscan 6 1 bechosentobediagonalifonewantstodrivetheoriginalhamiltoniantowardsaband-diagonalformandtosuppress : itsoff-diagonalmatrix-elements. Asaby-productonegetsaframeworkwheretheseoff-diagonalcomponentsmaybe v betterhandledinperturbationtheory. i X The application of the SRG approach to nuclear physics was proposed by Bogner, Furnstahl and Perry [5] with r thesesimplificationsinmindandwillbeourconcernhere(forreviewsseee.g.[6–8]andreferencestherein).Thefirst a applicationsoftheSRGmethodconsideredhigh-precision[9,10]andchiraleffectivefieldtheory(ChEFT)[11,12] nucleon-nucleon(NN)interactionsastheinputforthetwo-bodyflowequations. Despitedifferentdegreesoffreedom andtypesofinteraction,thenuclearmany-bodyproblemhasthesamedifficultyasthemany-electronprobleminsolid- state physics. More diagonal hamiltonians result in great simplification and faster convergence in nuclear structure calculations. ThisfeaturegaverisetoawholeprogramofapplicationoftheSRGmethodsinnuclearphysics[5–8]. Theformalismwasthenextendedtothree-bodyforcesinseveralschemes[13–15]. 1Correspondingauthor,tel.:+5511981483747,e-mailaddress:[email protected] PreprintsubmittedtoAnnalsofPhysics April29,2016 Yetinthetwo-nucleonsystem,theinterplaybetweentheSRGandasubtractiverenormalizationapproach[16–19] wasinvestigatedusingtheChEFT NN interactionatleading-order[20]. Also, theroleoflong-distancesymmetries ineffectiveinteractionsobtainedviaSRGflowequationshavebeenrecentlyinvestigatedbyus,showingthatthereis a particular SRG scale at which the SU(4) spin-isospin Wigner symmetry is realized almost exactly [21, 22]. This isaremarkableresultwhichshowsthatdespitetheincreasingpopularityoftheSRGideas,techniquesandextensive computational applications there is still much to be learned from dedicated analysis. The present paper provides furtherinsightsalongtheselines. The aim of this work is to explore the details underlying our recent results scanning all values of the SRG cut- off and to extend them. In our previous letter [23] a connection between the infrared limit of the SRG evolution withtheWegnergeneratorandLevinson’stheorem[24]wasestablished. Consequencesoftheinfraredinteractions for few-nucleon systems and the nuclear many-body problem were discussed in Ref. [25] where a theoretical and phenomenologicallysuccessfulpredictionfortheTjon-linehasbeenadvanced. Thisisawellknownexistinglinear correlationbetweenthebindingenergiesofthetritonandtheα-particlewhichshouldbeexpectedonthebasisofscale invariance [26] (see e.g. [27] for a review and references therein). Further consequences regarding unitary neutron matterintheon-shelllimitwithacalculationoftheBertschparameterwereaddressedin[28]andanSRGdiscussion oftheBCSpairinggaphasalsobeenundertakeninRef.[29]. InthisworkweinvestigatethefixedpointsoftheSRGevolutionindetailusingasimpletoymodelforthenuclear force in the two-nucleon S-waves as a particular illustration which simplifies the computational effort considerably and allows for detailed numerical studies in the infrared limit. However, in the infrared region we will suggest that many features are fairly general and model independent. Here we focus on the Wilson and the Wegner SRG generators,sincetheevolutionwithablock-diagonalgenerator[30]intheinfraredregionhasalreadybeenstudiedin previousworks[31,32],wheretheexplicitrenormalizationofasimpleNN forceandtheimplicitrenormalizationof apionlesseffectivefieldtheory(EFT)atnext-to-leadingorderwereshowntobeequivalentoverawiderangeofthe renormalizationscale. TheSRGequationsaremostlysolvednumericallyonafinitemomentumgridwithsufficiently many points as to approach the continuum and therefore the grid is viewed as an auxiliary means. Here, we will analyze many effects which can only be clearly disentangled with the aid of this momentum grid, which by itself hassomeimplicationsonitsownandprovidesbothaninfraredandultravioletcutoffsfeaturingtwobasicproperties of finite nuclei, namely, the long wavelength character of weak binding systems as well as the finite size of atomic nuclei. Kukulinandcollaboratorsinaseriesofrecentandremarkableworkshaveprofitedfromthesefinitegridsin thefew-bodyproblemincludingbothboundandscatteringstatesbyanalyzingHamiltonianeigenvalues[33–36]. It is conceivable that a judicious combination of SRG and this approach may provide useful insights into the nuclear few-bodyproblem. Thispaperisorganizedasfollows.InSection2wepresenttheSRGflowequationsinoperatorformandintroduce someusefulfunctionalnotationbothinthecontinuumlimitandinthediscretizedformwhichallowsforadiscussion offixedpointsandtheirstability. InSection3wereviewthetoymodelwhichprovidesaquitereasonabledescription oftheNNsystemintheS-wavechannelsatlow-momentaandwillbeusedinpracticetocarryoutourinfraredanaly- sis. InSection4wedealspecificallywiththeSRGflowequationsonafinitemomentumgrid. Thescatteringproblem asaLippmann-Schwinger(LS)equationonthefinitemomentumgridisanalyzedinSection5. Thereweprovidea motivation to define the phase-shift as an energy-shift which, unlike the conventional phase-shifts determined from thesolutionoftheLSequation,isinvariantunderunitarytransformationsonthegrid. Weillustratetheusefulnessof theanalysisbyre-derivingasetofgeneralizedtraceidentities,firstunveiledbyGraham,Jaffe,QuandtandWeigelin Ref.[37],butstartingfromamomentumgrid. OurnumericalresultsontheseissuesarepresentedinSection6. There wefocusonthecrucialissueoftheorderingofstatesalongtheSRGevolutiontrajectoryandtheremarkableconnec- tiontoLevinson’stheoremthroughanenergy-shiftformula.Ourinterpretationcorrectstheerroneousimplementation ofKukulinandcollaborators[33]. Someoftheconsequencesofthecorrectidentificationandorderingofstatesfor thenuclearbindingenergieswhenapproachingtheinfraredlimitintheA=2,3,4systemsarediscussedinSection7. TheretheSRGcutoffparameterstriggerstheavoidedcrossingpattern, familiarfrommolecularphysics, underlying theTjon-linecorrelation. Finally,inSection8wepresentasummaryoftheresultsandourmainconclusions. 2 2. SRGflowequationsinoperatorform Thesimilarityrenormalizationgroup(SRG)approach,developedbyGlazekandWilson[1,2]andindependently by Wegner [3], has been intensively applied in the context of nuclear physics to handle multi-nucleon forces in order to soften the short-distance core [5, 8] with a rather universal pattern for nuclear symmetries [21, 38] and interactions [39]. The basic strategy underlying the application of the SRG methods to nuclear forces is to evolve an initial (bare) interaction H, which has been fitted to NN scattering data, via a continuous unitary transformation that runs a cutoff λ on energy differences. Such a transformation generates a family of unitarily equivalent smooth interactionsH =U HU†withaband-diagonalstructureofaprescribedwidthroughlygivenbytheSRGcutoffλ. λ λ λ We employ the formulation for the SRG developed by Wegner [3], which is based on a non-perturbative flow equationthatgovernstheunitaryevolutionofthehamiltonianwithaflowparametersthatrangesfrom0to∞, H =U H U† , (1) s s 0 s where H0 ≡ Hs=0 istheinitialhamiltonianinthecenter-of-masssystem(CM)andUs istheunitarytransformation. Theflowparametershasdimensionsof[energy]−2andintermsoftheSRGcutoffλwithdimensionofmomentumis givenbytherelation s=λ−4. Asusual,wesplitthehamiltonianasH =T +V ,whereT ≡Tcm+Trel isthekinetic s s energy,whichweassumetobeindependentofs,andV istheevolvedpotential. Foratranslationalinvariantsystem, s i.e.V ≡Vrel,wecanseparatetheCMandconsideronlytheSRGevolutionofthehamiltonianfortherelativemotion, s s Hrel = Trel+Vrel,sincetheCMkineticenergyTcm doesnotcontribute[40]. Forsimplicity,inwhatfollowswewill s s dropthesuperscript“rel”. TheSRGflowequationinoperatorformcanthenbewrittenas dH dV s = s =[η ,H ], (2) ds ds s s with dU η = sU† =−η† , (3) s ds s s andistobesolvedwiththeboundaryconditionH | ≡ H =T +V . Theanti-hermitianoperatorη whichspecifies ss→0 0 0 s the unitary transformation U is usually taken as η = [G ,H ], where G is a hermitian operator which we will s s s s s call the SRG generator since it defines η and so the flow of the hamiltonian. The most popular choices for the s generatoraretherelativekineticenergyG =T (Wilsongenerator)[5],theevolvingdiagonalpartofthehamiltonian s G =diag(H )= HD(Wegnergenerator)[2]andthesocalledblock-diagonalgeneratorG = HBD = PH P+QH Q, s s s s s s s wheretheoperators Pand Q = 1−Pareorthogonalprojectors(P2 = P, Q2 = Q, QP = PQ = 0)forstatesbelow andaboveagivenmomentumscaleΛ [30]2. BD SofartheSRGequationsarequitegeneralandcanbeusedtoevolveanyhamiltonian. Inwhatfollowswewill restricttothecaseofNN interactionsinthecenter-of-mass(CM)system. 2.1. Partial-waveequations After decomposition of the NN interaction in partial waves the structure of the SRG flow equations simplifies considerably in the off-diagonal relative momentum-space basis (see e.g. [44] for an explicit derivation and details) forwhichthefollowingnormalizationinthecompletenessrelationwillbeassumed(hereandinwhatfollowsweuse unitssuchthat(cid:126)=c= M =1,whereMisthenucleonmass): (cid:90) 2 p2dp|p(cid:105)(cid:104)p|=1. (4) π Inserting this into Eq. (2) with the Wilson generator, G = T, the flow equation for the SRG evolution of the NN s potentialisgivenby(wedropthepartial-wavequantumnumbersforsimplicity) dV (p,p(cid:48)) 2(cid:90) ∞ s =−((cid:15) −(cid:15)(cid:48))2 V (p,p(cid:48))+ dqq2 ((cid:15) +(cid:15)(cid:48) −2(cid:15) )V (p,q)V (q,p(cid:48)), (5) ds p p s π p p q s s 0 2ThisisaunitaryimplementationtoallenergiesofthepreviouslyproposedVlowk approach[41]. Novelgeneratorshavebeenproposedin [42,43]. 3 where(cid:15) =(cid:104)p|T|p(cid:105)= p2. TheflowequationfortheSRGevolutionwiththeWegnergenerator,G = HD,reads p s s dV (p,p(cid:48)) (cid:104) (cid:105) 2(cid:90) ∞ (cid:104) (cid:105) s =−((cid:15) −(cid:15)(cid:48)) e (s)−e (s) V (p,p(cid:48))+ dqq2 e (s)+e (s)−2e (s) V (p,q)V (q,p(cid:48)), (6) ds p p p p(cid:48) s π p p(cid:48) q s s 0 wheree (s) = (cid:104)p|HD|p(cid:105) = p2+V (p,p). Aswesee,theseareintegro-differentialequationswhichcannotgenerally p s s besolvedanalytically(seehowever[45,46])andrequireamassivecomputationalefforttobesolvednumerically. We willtacklethisproblembelowbythetraditionaldiscretizationmethodofthecontinuum3. 2.2. Operatorspace Most compact features of the SRG formalism can be best appreciated within an operator space setup. We start withsomeremarksfromtheoperatortheoryforfinite-dimensionaloperatorsinordertointroducesomenotation(see e.g. the standard textbook [47]). For operators acting on a Hilbert space endowed with a scalar product of states ψ andϕsuchas(cid:104)ψ,ϕ(cid:105),wecanalsodefineafurtherscalarproductbetweenoperatorsAandB,namely (cid:104) (cid:105) (cid:104)A,B(cid:105)=Tr A†B . (7) FromherewedefinetheFrobeniusnormasusual (cid:104) (cid:105) ||A||2 =(cid:104)A,A(cid:105)=Tr A†A , (8) andhencetheinduceddistancebetweenoperatorsas d[A,B]=||A−B||. (9) Thenormcanalsobedefinedas ||A||=sup ||Aψ||, (10) ||ψ||=1 (cid:112) where the standard scalar product induced norm, ||ψ|| = + (cid:104)ψ,ψ(cid:105) has been introduced. Of course, this requires finite norm operators ||A|| < ∞ which is unfortunately not the case for the usual unbounded operators in quantum mechanics,suchasthekineticenergy. ThereforeanultravioletcutoffΛisgenerallyassumedtooperatehere. Using thepartial-waverelativemomentum-spacenormalizationmetricgiveninEq.(4)wehave 2(cid:90) ∞ (cid:104)ψ,ψ(cid:105)= dp p2|ψ(p)|2 . (11) π 0 Thus,thekineticenergywouldhaveinfinitenorm,||T||→Λ2/M →∞ifeverythingistakenliterally. However,note thatthecontinuumSRGflowequationsdonotneedthekineticenergytobebound,butratherthepotentialenergy.So, theimplicitassumptionisthatatveryhighenergiesthekineticenergydominatesoverthepotentialenergyandhence SRGflowequationsarewelldefinedprovidedthevalueofthepotentialdoesnotboundlesslygrow.Thefirstproblems weencounterwithallthesepropertiesare: i)thefactthatthemomentum-spacebasisspansacontinuumsetandii) theoperatorsareunbounded. Thisdifficultyiscircumventedinpracticebyusingafinitegridinmomentum-spaceand alsointroducingahigh-momentumcutoff p =Λwhichwillbeassumedbelow. max 2.3. Isospectralflowandfixedpoints InthissectionwebrieflyreviewtheconceptsofisospectralflowandfixedpointsincorporatedintheSRGevolution andthevariationalinterpretationinoperatorspace. 3However,theusefulnessofdiscretizingthecontinuumequationsgoesbeyondthepracticalneedofnumericallyimplementingthescattering problem;itprovidesatheoreticalbridgebetweentheenergy-shiftinthespectrumandthescatteringphase-shifts.Wewillseethatthisbecomesa crucialaspectwhenthenumberofgridpointsisreducedtoaminimum. 4 The isospectrality of the SRG flow equation becomes evident from the trace invariance property of the evolved hamiltonianH . ForanychoiceoftheSRGgeneratorG wehaveaunitarytransformationandhence s s TrHn =TrHn , (12) s 0 for any integer n. This property follows directly from the commutator structure of the SRG flow equation plus the regulatorassumption4. Indeed,usingthecyclicpropertiesofthetraceweget (cid:32) (cid:33) d dH (cid:16) (cid:17) TrHn =nTr Hn−1 s =nTr Hn−1[η ,H ] =0. (13) ds s s ds s s s FixedpointsoftheSRGevolutioncorrespondtostationarysolutionsoftheflowequation,Eq.(1), dH s =[[G ,H ],H ]=0. (14) ds s s s Thisconditionimpliesthatthereisabasisinwhichboth[G ,H ]andH becomesimultaneouslydiagonalatafixed s s s point. ThequestioniswhatchoicesofthegeneratorG actuallydrivethehamiltonian H tothediagonalform. For s s generatorsG whichsatisfyd/ds(TrG2)=0andusingthecyclicpropertiesofthetraceandtheinvarianceofTrHn, s s s wegetthat d (cid:104) (cid:105) Tr(H −G )2 =2Tr[G ,H ]2 =−2Tr (i[G ,H ])†(i[G ,H ]) ≤0, (15) ds s s s s s s s s because A ≡ i [G ,H ] = A† is a self-adjoint operator and therefore A†A is a semi-definite positive operator. Since s s Tr (H −G )2 is positive but its derivative is negative, the limit s → ∞ exists and corresponds to the infrared fixed s s pointoftheSRGevolution(λ → 0), atwhichthehamiltonian H becomesdiagonal. Thus, theSRGflowequation s justprovidesacontinuousproceduretodiagonalizetheinitialhamiltonianH =T +V . 0 0 InthecaseoftheSRGevolutionwiththeWilsongenerator,G =T,theflowequationisgivenby s dH dV s = s =[[T,H ],H ]=[[T,V ],T +V ]. (16) ds ds s s s s Wethengetfor||V ||≡TrV2that s s d (cid:104) (cid:105) TrV2 =2Tr[T,V ]2 =−2Tr (i[T,V ])†(i[T,V ]) ≤0. (17) ds s s s s Asaconsequenceofthisandusingtheunitaryequivalence,H =T +V =U H U†,wegetthat s s s 0 s 0<TrV2 ≤TrV2 . (18) s 0 Thereforetheremustbeaminimumvalueobtainedatthelimits→∞whichalsoimpliesin[T,V ]=0duetothe s→∞ stationaryconditiononthederivativefortheinfraredfixedpoint. Hence (cid:12) limTrV2 =minTrV2(cid:12)(cid:12) . (19) s→∞ s Vs s(cid:12)Hs=T+Vs=UsH0Us† Thus,intheinfraredlimit s → ∞(λ → 0)theSRGevolutionwiththeWilsongeneratoryieldsasymptoticallytothe smallestpotential,intheFrobeniusnormsense,givingthesamespectrumastheinitialpotentialV andcommuting 0 withthekineticenergyT,i.e. beingdiagonalinmomentum-space. Thisisaratherinterestingresultasitprovidesa workingdefinitiononthe“size”ofthepotential,andmoreoverdifferentpotentialscanactuallybecomparedusingthe distancebetweentheoperatorsinducedbytheFrobeniusnorm. Furthermore,thiscanbeinterpretedasaquantitative whi4cMhafothreamloatciaclalploy,tesnutciahlaVp(rr,orp(cid:48)e)r=tyVis(ri)llδ(dre−finre(cid:48)d)dinivtehregecsoanstitnhueummolmimeinttusimncceuetovffen.Afolrson,=the1toranceehoafsaTcro(Vmsm)u=ta(cid:82)t0o∞rTp2r[VAs,(Bp,]po)nl=y(cid:82)v0a∞nirs2hdersVw(rh,ern) bothTr(AB)andTr(BA)arefinite,asthechoiceA=pandB=xclearlyillustrates,since[p,x]=−i(cid:126)andhenceTr[p,x]=−i(cid:126)TrI=∞. 5 measureoftheoff-shellnessoftheinteraction. Inthepartial-waverelativemomentum-spacebasistheorbitaldegen- eracy induced by the (2/π)p2dp integration measure in the Frobenius norm has two complementary effects. While itsuppressesthecontributiontothenormfromlow-energystatesitalsoenhancesthecontributionfromhigh-energy components. Thus,minimizingthepotentialalongtheSRGevolutiontrajectorytransfersveryefficientlyhigh-energy componentsintolow-energycomponents. Thisprovidesaworkingschemewhereanyshort-distance,orequivalently high-momentum core, becomes softer. It is fair to say that this is the main reason why SRG methods have become popular in realistic nuclear applications. For completeness let us mention that there is an alternative interpretation of softness of the interaction not based on the Frobenius norm, and based on the insightful work of Weinberg [48] and taken up by recent studies from several viewpoints [49, 50] where the repulsive character of the interaction at short-distanceplaysakeyrole. Atpresenttheconnectionbetweenthesetwoalternatives,whilesuggestingdifferent measures of the softness, is somewhat vague and we will not dwell into it here. In our case, we will deal with a potentialtoymodelwheretherepulsivepieceisabsentfromthestart(seeSection3). InthecaseoftheSRGevolutionwiththeWegnergenerator,G = HD,theflowequationisgivenby s s dH dV s = s =[[HD,H ],H ]. (20) ds ds s s s Then,inthiscasewegetfor||H −HD||2 ≡Tr(H −HD)2that s s s s d (cid:20)(cid:16) (cid:17)†(cid:16) (cid:17)(cid:21) Tr(H −HD)2 =2Tr[HD,H ]2 =−2Tr i[HD,H ] i[HD,H ] ≤0, (21) ds s s s s s s s s suchthat||H −HD||→0andso s s lim H = HD =min||H −HD||, (22) s s s s s→∞ Hs whichjustshowsthattheWegnergeneratorminimizesthedistancetoitsdiagonalmatrix-elementskeepingtheeigen- values ofthe originalHamiltonian. Ofcourse, if thehamiltonianbecomes diagonalthe eigenvectorscannot befree momentumeigenstates. Finally,fortheblock-diagonalgeneratorwedefinetwoorthogonalprojectionoperatorsP+Q=1whichsplitthe statesbeloworaboveagivenmomentumscaleΛ . Inthiscasetheflowequationisgivenby BD dH s =[[PH P+QH Q,H ],H ]. (23) ds s s s s Wethengetthattheevolutionmakestheasymptotichamiltonianblock-diagonalhenceminimizingtheoff-diagonal matrix-elements, lim H = PH P+QH Q=min||H −PH P−QH Q||. (24) s s s s s s s→∞ Hs 2.4. Discreteequations OnlyinfewcasestheSRGoperatorequationscanbehandledinthecontinuum[45,46].Inthissectionweanalyze thedetailsoftheimplementationoftheSRGwhenafinitedimensionalreductionofthemodelspaceisimposed. The particularcaseofamomentumgriddiscretizationofthecontinuumwillbediscussedspecificallyinalatersection. Forsimplicitywewillconsiderabasisofeigenstates|n(cid:105)ofthekineticenergyoperatorT onafinite N-dimensional HilbertspaceH ,namelyT|n(cid:105)=(cid:15) |n(cid:105)(n=1,2,...,N),andassumethatthecorrespondingspectrumofeigenvalues N n (cid:15) isnon-degenerate(similartowhathappensinthepartial-waverelativemomentum-spacebasisforwhich(cid:15) = p2). n n n Thus,thematrix-elementsofthehamiltonianH =T +V inthisbasisreadH ≡(cid:104)n|H|m(cid:105)=δ (cid:15) +V . nm nm n nm ThediscreteSRGflowequationsforthematrix-elementsofthehamiltonianinthecaseoftheWilsongenerator canbewrittenintheform dH (s) (cid:88) nm = ((cid:15) +(cid:15) −2(cid:15) )H (s)H (s) ds n m k nk km k (cid:88) = −((cid:15) −(cid:15) )[e (s)−e (s)]H (s)+ ((cid:15) +(cid:15) −2(cid:15) )H (s)H (s), (25) n m n m nm n m k nk km k(cid:44)n,m 6 whereH (s)=δ (cid:15) +V (s)ande (s)≡ H (s)=(cid:15) +V (s). InthecaseoftheWegnergeneratorthediscreteSRG nm nm n nm n nn n n flowequationsread dH (s) (cid:88) nm = [e (s)+e (s)−2e (s)]H (s)H (s) ds n m k nk km k (cid:88) = −[e (s)−e (s)]2H (s)+ [e (s)+e (s)−2e (s)]H (s)H (s). (26) n m nm n m k nk km k(cid:44)n,m TheseequationsaretobesolvedwiththeboundaryconditionsH (s)| ≡ H (0)=δ (cid:15) +V (0). nm s→0 nm nm n nm ThefixedpointsoftheSRGevolutionwithagivengeneratorG correspondtothestationarysolutionsoftheSRG s flowequationsforthematrix-elementsofthehamiltonian, dH (s) nm =(cid:104)n|[[G ,H ],H ]|m(cid:105)=0, (27) ds s s s whichimplies,forboththeWilson(G = T)andtheWegner(G = HD)generators,thatintheinfraredlimit s → ∞ s s s (λ→0)thehamiltonianH becomesdiagonal5. Thus,wehavethat s lim H (s)=δ E , (28) nm nm n s→∞ where{E }N denotesthespectrumofdiscreteeigenvaluesofthehamiltonianH obtainedintheinfraredlimits→∞, n n=1 s whicharegivenby E ≡ lime (s)=(cid:15) +V (s→∞). (29) n n n n s→∞ 2.4.1. OrderingofthespectruminducedbytheSRGevolution Aswehaveshown,theSRGevolutionwithboththeWilsonandtheWegnergeneratorsonafiniteN-dimensional discretespacehaveinfraredfixedpointsatwhichthehamiltonianbecomesdiagonal. Thus,wehavetwointerpolating SRG trajectories between the initial bare hamiltonian, H , and the final one, H . From this point of view, there 0 s→∞ seems to be no conceptual difference between the SRG evolution with both generators, since the isospectrality of the SRG flow equation guarantees the invariance of the spectrum of eigenvalues of the hamiltonian H . This naive s argumentoverlooksanimportantdetail: thefactthatthroughtheSRGevolutionthebasisofeigenstates|ψ (s)(cid:105)ofthe α hamiltonianH isactuallychanging,i.e. s U |ψ (s=0)(cid:105)=|ψ (s)(cid:105), (30) s α α and thus the isospectrality does not necessarily fix the final ordering of the eigenvalues which is obtained in the infraredlimit s→∞(λ→0). ThisisnotapeculiarfeatureoftheSRGevolution;itissharedbyanydiagonalization procedure. IntheGausseliminationmethod[51], forinstance, onemakesanarbitrarychoiceonhowtoreducethe originalmatrixtoadiagonalforminafinitenumberofsteps; there-orderingofeigenstateshastobeover-imposed at the end by hand, arbitrarily choosing one of the possible permutations of the eigenvalues. Such a re-ordering of eigenstates is equivalent to a unitary transformation. However, unlike the conventional diagonalization methods, the SRG evolution can be interpreted as a continuum diagonalization through the flow parameter s, and thus an infinite number of steps is involved. As a consequence, the SRG evolution induces a very specific ordering of the eigenstates. This, of course, does not provide exact results since in practice the infrared limit s → ∞ is never 5Oneshouldnotethatthestationaryconditioninoperatorform,Eq.(14),inprinciplejustrequiresthatatafixedpointboth[Gs,Hs]andHs becomediagonalinthesamebasis, notnecessarilytheoneinwhichthegeneratorGs isdiagonal. However, wecanshowthatthecondition [[Gs,Hs],Hs]=0alsoimpliesthat[Gs,Hs]=0.TakingadiscretebasisinwhichHsisdiagonal,i.e.Hαβ(s)=δαβHα(s),wehave (cid:88)(cid:104) (cid:105) (cid:104) (cid:105) (cid:104)α|[Gs,Hs]|β(cid:105)= Gαγ(s)Hγβ(s)−Hαγ(s)Gγβ(s) =Gαβ(s) Hβ(s)−Hα(s) . γ Thus,forα(cid:44)βweget,intheabsenceofdegeneracies,that(cid:104)α|[Gs,Hs]|β(cid:105)=0onlyifGαβ(s)=0andsoboththehamiltonianHsandthegenerator Gs arediagonalinthesamebasis. Ofcourse, thisbecomesatrivialresultforgeneratorsGs whichbydefinitionarediagonalinthebasisof eigenstatesofthekineticenergyoperatorT,suchastheWilsonandtheWegnergenerators. 7 reached,buttheerrorsscaleexponentiallywiththeflowparametersandareoforderO[e−min(s(cid:15)n2)].Thecrucialaspect is that since on a finite dimensional discrete space the SRG flow equation becomes a set of non-linear first-order coupleddifferentialequationsforthematrix-elementsoftheevolvedhamiltonianH (s)withtheboundaryconditions nm H (s)| ≡ H (0),theuniquenessofthesolutionimpliesthatjustoneparticularorderingoftheeigenvaluestakes nm s→0 nm placeasymptoticallyintheinfraredlimits→∞,whichmaydependonthechoiceoftheSRGgeneratorG . s Letusconsidertheinitialbarehamiltonian H inthebasisofeigenstates|n(cid:105)ofthekineticenergyoperatorT on 0 a finite N-dimensional Hilbert space H . The spectrum of eigenvalues {(cid:15) }N of the operator T is assumed to be N n n=1 non-degenerate and arranged in ascending order, i.e. (cid:15) < (cid:15) < ··· < (cid:15) . If we denote by {E0}N the spectrum of 1 2 N α α=1 N discreteeigenvaluesofH obtainedbyanyconventionalmatrixdiagonalizationmethodandarranged(byhand)in 0 ascendingordersimilarlytothespectrumofeigenvaluesofT,i.e. E0 < E0 < ··· < E0,thenwehavethatthefinal 1 2 N orderingofthespectrumofeigenvalues{E }N oftheSRGevolvedhamiltonian H , obtainedasymptoticallyinthe n n=1 s infraredlimits→∞,isspecificallygivenby {E }N ≡{E0 }N , (31) n n=1 π(α) α=1 whereπ(α)isoneoftheN!possiblepermutationsofthespectrumofH . 0 It is important to note that in the continuum diagonalization of the hamiltonian through the SRG evolution, the correspondencebetweenthekineticenergies(cid:15) andthediagonalmatrix-elementsofthepotentialV (s)ismaintained n n allthewayalongtheSRGtrajectory,asonecanclearlyseefromtheexpressionforthediagonalmatrix-elementsof thehamiltonian,H (s) = (cid:15) +V (s). Thus,wehaveauniquewell-definedpairingofthekineticenergies(cid:15) withthe nn n n n eigenvalues E obtainedasymptoticallyintheinfraredlimit s → ∞,namely E = H (s → ∞) = (cid:15) +V (s → ∞), n n nn n n which is indeed what determines the specific ordering of the spectrum induced by the SRG evolution. One should alsonotethatdependingonwhichparticularfinalorderingoftheeigenvaluestakesplaceintheinfraredlimit s→∞ theremaybecrossingamongstdiagonalmatrix-elementsofthehamiltonianH (s)alongtheSRGtrajectory. Onthe nn otherhand,intheconventionaldiagonalizationmethodsthereareN!differentwaysofpairingthekineticenergies(cid:15) n withtheeigenvaluesE0,correspondingtothepossibleorderingsofthespectrum. AswehavediscussedinRef.[23], α thisisacrucialissuetoestablishanisospectraldefinitionofthephase-shiftbasedonanenergy-shiftapproach,which necessarilyinvolvesaprescriptiontoordertheeigenvaluesE0 andsettheirpairingwiththekineticenergies(cid:15) . α n Insection6wewillillustratethroughnumericalcalculationsthatwhenbound-statesareallowedbytheinteraction thephase-shiftsevaluatedusingtheenergy-shiftapproachdonotcomplytoLevinson’stheorem[24]atlow-energies ifanaivepairingissetjustbyorderingthespectrumofeigenvaluesE0 inascendingorderasthekineticenergies(cid:15) ; α n wefurthershowthatthespecificorderingofthespectruminducedbytheSRGevolutionwiththeWegnergenerator in the infrared limit s → ∞ remarkably provides a prescription to evaluate the phase-shifts using the energy-shift approachwhichallowstoobtainresultsthatfulfillLevinson’stheoreminthepresenceofbound-states. Insection7 wedicusstheinequivalentbehaviourofboththeWilsonandtheWegnergeneratorsinsimplevariationalcalculations beyondsomecriticalSRGcutoffapproachingtheinfraredlimit. 2.4.2. Stabilityanalysisoftheinfraredfixedpoints As we have pointed out, the uniqueness of the solution of the SRG flow equations on a finite N-dimensional discrete space implies that a very specific final ordering of the eigenvalues of the hamiltonian is obtained in the infraredlimit s → ∞(λ → 0). Ofcourse,theuniquenessofthesolutionfurtherimpliesthattheinfraredfixedpoint towhichtheSRGevolvedhamiltonianissteadilydrivenmustbeasymptoticallystable. Inthissectionwewillcarry outaperturbativestabilityanalysisoftheinfraredfixedpointsforboththeWilsonandtheWegnergenerators,which isbasedonalinearizationoftheSRGflowequationssimilartothatdescribedinRef.[52],asanattempttodetermine a priory the final ordering of the spectrum induced by the SRG evolution in the infrared limit. As we will see, the perturbative analysis is well-succeeded in predicting the ordering of the spectrum only in the case of the Wilson generator, although the results for both generators are consistent with the analytical proof of diagonalization of the SRGevolvedhamiltonianpresentedinRefs[7,40]. Let us consider a perturbation of the matrix-elements of the SRG evolved hamiltonian H (s) near an infrared nm fixedpointH (s→∞)=δ E ,namely nm nm n H (s)=δ E +∆H (s), (32) nm nm n nm 8 withthematrix-elementsoftheperturbation∆H (s)requiredtosatisfythecondition∆H (s→∞)=0. nm nm ByinsertingtheperturbedhamiltonianintotheSRGflowequationandtakingonlythetermstofirst-orderinthe perturbation we can obtain a set of linearized flow equations for the matrix-elements ∆H (s). In the case of the nm WilsongeneratorG =T,wegetfromEq.(25) s d∆H (s) nm =−((cid:15) −(cid:15) )(E −E )∆H (s). (33) ds n m n m nm Thesolutionsoftheseequationsforthediagonalmatrix-elements(n=m)arejustconstantswhichactuallyvanishdue tothecondition∆H (s → ∞) = 0,namely∆H (s) ≡C = 0,whileforthenon-diagonalmatrix-elements(n (cid:44) m) nn nn nn thesolutionsaregivenby ∆Hnm(s)=Cnme−s((cid:15)n−(cid:15)m)(En−Em) , (34) where the integration constantsC will depend on the initial conditions set for the matrix-elements H (s) of the nm nm perturbedhamiltonian. Thus,wehave Hnm(s)= Enδnm+Cnme−s((cid:15)n−(cid:15)m)(En−Em)+... . (35) Clearly, in the absence of degeneracies the off-diagonal matrix-elements will be ensured to monotonically decrease withsprovided((cid:15) −(cid:15) )(E −E )>0. ThisimpliesthatfromallN!possiblefinalorderingsofthespectrumonlythe n m n m oneinwhichtheeigenvaluesE arearrangedaccordingtothekineticenergies(cid:15) ,i.e. inascendingorder,corresponds n n toanasymptoticallystableinfraredfixedpoint. Thus,intheWilsongeneratorcasetheperturbativestabilityanalysis to first-order in the perturbation allows to predict beforehand the specific final ordering of the spectrum induced by theSRGevolutionintheinfraredlimit. InthecaseoftheWegnergeneratorG = HD,wegetfromEq.(26) s s d∆H (s) nm =−(E −E )2∆H (s). (36) ds n m nm whichyieldsthesolution ∆Hnm(s)=Cnme−s(En−Em)2 , (37) suchthat Hnm(s)= Enδnm+Cnme−s(En−Em)2 +... . (38) As one can see, in this case the off-diagonal matrix-elements will monotonically decrease with s (in the absence of degeneracies) regardless the ordering of the eigenvalues and so in principle all N! possible final orderings of the spectrum correspond to asymptotically stable infrared fixed points. Thus, in the Wegner generator case the specific final ordering of the spectrum induced by the SRG evolution in the infrared limit cannot be determined a priory throughtheperturbativestabilityanalysistofirst-orderintheperturbationandwehavetorelyonnumericalanalysis. 3. AsimpletoymodelfortheNNinteraction We intend to explore the infrared limit of the SRG evolution (λ → 0). Quite generally, the equations to be discussedinvolveheavynumericalcalculationswithadiscretizedcontinuumspectruminthecaseofnuclearphysics. The problem is that most of the high-precision potentials, which fit NN scattering data up to the pion-production √ threshold ( m M ∼ 350 MeV), have a very long tail in momentum space which requires many points and large π N momentum cutoffs not to miss important contributions. As a consequence the flow equation gets extremely stiff as the SRG cutoff λ approaches zero, such that the computational effort becomes unduly expensive. Actually, there is currentlyagapinSRGcalculationsbelowλ∼1fm−1forhigh-precision[9,10]andChEFT[11,12]NN potentials. Therefore,wewillillustratemostofourpointsbyusingasimpletoymodelfortheNN interactionwhichreduces the computational time and allow us to push the SRG evolution towards the infrared limit in a way which is not 9 practical with realistic interactions. The simplicity of the toy model does not affect the main features of the NN interactionintheS-wavechannelsandgivesustheopportunitytoinvestigatetheinfraredfixedpointoftheSRGflow equationswithanygenerator. HereweconcentrateontheWilsonandtheWegnergenerators. Our framework is defined by a toy model for the NN force in the 1S and the 3S channels which consists of a 0 1 separablegaussianpotential,givenby (cid:104) (cid:16) (cid:17) (cid:105) V(p,p(cid:48))=Cg (p)g (p(cid:48))=C exp − p2+p(cid:48)2 /L2 . (39) L L The parameters C and L are determined from the solution of the LS equation for the on-shell transition matrix T byfittingtheexperimentalvaluesoftheparametersoftheEffectiveRangeExpansion(ERE)tosecondorderinthe on-shell momentum, i.e. the scattering length a and the effective range r . Namely, we solve the partial-wave LS 0 e equationfortheT-matrixwiththetoymodelpotential, 2 (cid:90) ∞ V(p,q) T(p,p(cid:48);E)=V(p,p(cid:48))+ dqq2 T(q,p(cid:48);E), (40) π E−q2+i(cid:15) 0 whereEisthescatteringenergy,andmatchtheresultingon-shellT-matrixtotheEREexpansion, (cid:34) (cid:35) 1 1 T−1(k,k;k2)=− − + r k2+O(k4)−ik =−[kcotδ(k)−ik] , (41) a 2 e 0 √ wherek = E istheon-shellmomentumintheCMframeandδ(k)standsforthephase-shifts. Inordertoavoidthe numericalintegrationonacontourinthecomplexplane,weswitchtotheLSequationforthepartial-wavereactance matrixK withstanding-waveboundaryconditions, 2 (cid:90) ∞ V(p,q) K(p,p(cid:48);k2)=V(p,p(cid:48))+ P dqq2 K(q,p(cid:48);k2), (42) π k2−q2 0 wherePdenotestheCauchyprincipalvalue. TherelationbetweentheK-matrixandtheT-matrixon-shellisgivenby K−1(k,k;k2)=T−1(k,k;k2) − ik=−kcotδ(k). (43) FollowingthemethodintroducedbySteeleandFurnstahl[53],wefitthedifferencebetweentheinverseon-shell K- matricescorrespondingtothetoymodelpotentialandtheEREexpansiontoaninterpolatingpolynomialofdegreek2 foraspreadofverysmallon-shellmomenta(k≤0.1fm−1),namely ∆K−1 = K−1(k,k;k2)−K−1 (k,k;k2)= A +A k2 . (44) ERE 0 2 andthenminimizethecoefficientsA andA withrespecttothevariationsoftheparametersCandL. 0 2 Inthecaseoftheseparablegaussianpotentialtoymodel,givenbyEq.(39),itisstraightforwardtodeterminethe phase-shiftsδ(k)fromthesolutionoftheLSequationfortheT-matrixusingtheansatz T(p,p(cid:48);k2)=g (p)t(k)g (p(cid:48)), (45) L L where t(k) is called the reduced on-shell T-matrix. This leads to the simple relation (valid for separable potenials only) 1 (cid:34) 2 (cid:90) ∞ 1 (cid:35) kcotδ(k)=− 1− P dqq2 V(q,q) . (46) V(k,k) π k2−q2 0 InTable1wedisplaythevaluesoftheparametersforthetoymodelpotentialinthe1S andthe3S channelsused 0 1 inournumericalcalculations,whichareadjustedtoreproducethecorrespondingexperimentalvaluesofa andr by 0 e themethoddescribedabove. Thephase-shiftsforthetoymodelpotentialinthe1S andthe3S channelsevaluatedfromEq.(46)areshownin 0 1 Fig.1,togetherwiththeresultsobtainedfromthe1993Nijmegenpartial-waveanalysis(PWA)[54]orthemorerecent 2013upgrades[55–58]. Asonecansee,despitethesimplicityofthepotentialandthefactthatthe3S channelisnot 1 treatedasacoupledchannel,ourtoymodelfortheNNinteractionprovidesareasonablequalitativedescriptionofthe S-wavephase-shifts. Moreover,theon-shellT-matrixforthe3S channeltoymodelpotentialhasapolelocatedatan 1 imaginarymomentumk=iγ=i0.2314fm−1,correspondingtoasatisfactoryDeuteronbinding-energyB (cid:39)2MeV. d 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.