Ravi P. Agarwal · Erdal Karapınar Donal O’Regan Antonio Francisco Roldán-López-de-Hierro Fixed Point Theory in Metric Type Spaces Fixed Point Theory in Metric Type Spaces Ravi P. Agarwal • Erdal Karapınar (cid:129) Donal O’Regan Antonio Francisco Roldán-López-de-Hierro Fixed Point Theory in Metric Type Spaces 123 RaviP.Agarwal ErdalKarapınar DepartmentofMathematics DepartmentofMathematics TexasA&MUniversity-Kingsville AtılımUniversity Kingsville,Texas,USA Incek,Ankara,Turkey DonalO’Regan AntonioFranciscoRoldán-López-de-Hierro NationalUniversityofIreland DepartmentofQuantitativeMethods Galway,Galway,Ireland forEconomicsandBusiness UniversityofGranada Granada,Spain ISBN978-3-319-24080-0 ISBN978-3-319-24082-4 (eBook) DOI10.1007/978-3-319-24082-4 LibraryofCongressControlNumber:2015953665 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia(www. springer.com) RaviP.Agarwal:TomywifeSadhna. ErdalKarapınar:TomywifeSenemPınar andourchildUlas¸ Ege. DonalO’Regan:TomywifeAliceandour childrenAoife,Lorna,Daniel,andNiamh. AntonioF.Roldán-López-de-Hierro: Tomy wifeMaríaJosé,ourdaughtersAnaand Sofía,andmyparentsMaríaDoloresand Antonio. Preface Fixed-pointtheoryisoneofthemajorresearchareasinnonlinearanalysis.Thisis partly due to the fact that in many real-world problems, fixed-point theory is the basic mathematical tool used to establish the existence of solutions to problems whicharisenaturallyinapplications.Asaresult,fixed-pointtheoryisanimportant areaofstudyinpureandappliedmathematics,anditisaflourishingareaofresearch. Asthetitlestates,thisisabookonmetricfixed-pointtheorywherethebasicideas comefrommetricspacetopology.Wepresentaself-containedaccountofthetheory (techniquesandresults)inmetric-typespaces(inparticularinG-metricspaces). Thebookconsistsof12chapters.Thefirstthreechapterspresentsomeprelim- inaries and historical notes on metric spaces (in particular G-metric spaces) and onmappings.AvarietyofBanach-typecontractiontheoremsinmetric-typespaces are established in Chaps.4, 6, 7, and 8. Fixed-point theory in partially ordered G-metric spaces is discussed in Chaps.5 and 8. Fixed-point theory for expansive mappings in metric-type spaces is presented in Chap.9. The final three chapters discussgeneralizationsandpresentresultsandtechniquesinaverygeneralabstract settingandframework. Wewouldliketoexpressourthankstoourfamilyandfriends. RaviP.Agarwal,ErdalKarapınar,DonalO’ReganandAntonioF.Roldán-López- de-Hierro. Kingsville,USA RaviP.Agarwal Incek,Turkey ErdalKarapınar Galway,Ireland DonalO’Regan Granada,Spain AntonioFranciscoRoldán-López-de-Hierro vii Contents 1 IntroductionwithaBriefHistoricalSurvey............................. 1 1.1 2-MetricSpaces ...................................................... 1 1.2 D-MetricSpaces...................................................... 2 1.3 SomeProblemswithD-MetricSpaces.............................. 3 2 Preliminaries................................................................ 5 2.1 Sets,MappingsandSequences ...................................... 5 2.2 Fixed,CoincidenceandCommonFixedPoints..................... 9 2.3 ControlFunctions .................................................... 10 2.3.1 ComparisonFunctions ..................................... 11 2.3.2 AlteringDistanceFunctionsandAssociatedFunctions .. 13 2.3.3 C´iric´ Functions ............................................. 22 2.3.4 PropertiesofControlFunctions............................ 25 2.4 MetricStructures..................................................... 26 2.5 Quasi-metricSpaces.................................................. 28 2.6 TopologicalStructures ............................................... 30 3 G-MetricSpaces ............................................................ 33 3.1 G-MetricSpaces...................................................... 33 3.1.1 BasicProperties............................................. 35 3.1.2 SomeRelationshipsBetweenMetricsandG-Metrics .... 38 3.1.3 SymmetricG-MetricSpaces............................... 40 3.2 TopologyofaG-MetricSpace....................................... 42 3.2.1 ConvergentandCauchySequences........................ 44 3.2.2 ContinuityofMappingsBetweenG-MetricSpaces ...... 48 3.3 G-MetricsandQuasi-metrics........................................ 49 4 BasicFixedPointResultsintheSettingofG-MetricSpaces .......... 51 4.1 TheBanachProcedure............................................... 51 4.1.1 TheBanachProcedure ..................................... 51 4.1.2 AboutAsymptoticallyRegularSequences thatarenotCauchy......................................... 54 ix
Description: