ebook img

First detection of CF+ towards a high-mass protostar PDF

11.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview First detection of CF+ towards a high-mass protostar

Astronomy&Astrophysicsmanuscriptno.aa24718-14 (cid:13)cESO2015 January23,2015 LettertotheEditor + First detection of CF towards a high-mass protostar S.Fechtenbaum1,2,S.Bontemps1,2,N.Schneider1,2,T.Csengeri3, A.Duarte-Cabral4,F.Herpin1,2,andB.Lefloch5 1 Univ.Bordeaux,LAB,UMR5804,F-33270,Floirac,France e-mail:[email protected] 2 CNRS,LAB,UMR5804,F-33270Floirac,France 3 Max-Planck-InstitutfürRadioastronomie,AufdemHügel69,53121Bonn,Germany 4 SchoolofPhysicsandAstronomy,UniversityofExeter,StockerRoad,ExeterEX44QL,UK 5 LaboratoireAIMParis-Saclay,CEA/IRFU-CNRS/INSU-UniversitéParisDiderot,CEA-Saclay,Gif-sur-YvetteCedex,France 5 Received—,—;accepted——,—- 1 0 2 ABSTRACT n Aims.WereportthefirstdetectionoftheJ=1-0(102.6GHz)rotationallinesofCF+(fluoromethylidyniumion)towardsCygX-N63, a ayoungandmassiveprotostaroftheCygnusXregion. J Methods. This detection occurred as part of an unbiased spectral survey of this object in the 0.8−3 mm range, performed with 2 theIRAM30mtelescope.Thedatawereanalyzedusingalocalthermodynamicalequilibriummodel(LTEmodel)andapopulation 2 diagraminordertoderivethecolumndensity. Results.Thelinevelocity(–4kms−1)andlinewidth(1.6kms−1)indicateanoriginfromthecollapsingenvelopeoftheprotostar. ] WeobtainaCF+columndensityof4×1011cm−2.TheCF+ionisthoughttobeagoodtracerforC+andassumingaratioof10−6for R CF+/C+,wederiveatotalnumberofC+of1.2×1053withinthebeam.Thereisnoevidenceofcarbonionizationcausedbyanexterior S sourceofUVphotonssuggestingthattheprotostaritselfisthesourceofionization.Ionizationfromtheprotostellarphotosphereis . notefficientenough.Incontrast,X-rayionizationfromtheaccretionshock(s)andUVionizationfromoutflowshockscouldprovide h alargeenoughionizingpowertoexplainourCF+detection. p Conclusions.Surprisingly,CF+hasbeendetectedtowardsacold,massiveprotostarwithnosignofanexternalphotondissociation - o region(PDR),whichmeansthattheonlypossibilityistheexistenceofasignificantinnersourceofC+.Thisisanimportantresult r thatopensinterestingperspectivestostudytheearlydevelopmentofionizedregionsandtoapproachtheissueoftheevolutionofthe st innerregionsofcollapsingenvelopesofmassiveprotostars.Theexistenceofhighenergyradiationsearlyintheevolutionofmassive a protostarsalsohasimportantimplicationsforchemicalevolutionofdensecollapsinggasandcouldtriggerpeculiarchemistryand [ earlyformationofahotcore. 1 Keywords. stars:formation,protostars,massive,outflows,individual:CygX-N63 v 9 3 1. Introduction CygX-N63 has been determined by Motte et al. (2007) to 4 be one of the brightest and most compact 1.2mm cores in the 5 CygnusXregion(Schneideretal.2006)atadistanceof1.4kpc 0 .Theformationofmassivestarsisstillnotwellunderstood.Im- (Rygletal.2012).Itisverylikelyamassiveprotostarinitsearli- 1 portantquestionsarerelatedtoaccretionratesrequiredtoform estphaseofformation(Bontempsetal.2010).Withanenvelope 0 5massivestarsinthemonolithiccollapsescenario,andtotheevo- massof44M(cid:12)within2500AU,andaluminosityof340L(cid:12),itis lution of the inner regions of the collapsing cores where the themostmassiveandyoungestprotostardetectedinCygnusX, 1 :disksformandstellarfeedbackoccurs(e.g.Yorke&Sonnhalter andisrecognizedasaClass0massiveprotostardrivingapower- v2002;Duarte-Cabraletal.2013).Forhighaccretionrates(10−4 fulCOoutflow(Duarte-Cabraletal.2013).Itdoesnotyetexcite Xito10−3M(cid:12)/yr),theprotostarshavelargeradii(10to100R(cid:12))be- anUCHIIregionanddoesnotcontainadevelopedhotcoreand foretheycontracttoreachthemainsequencewhilestillaccret- could thus be a rare example of a massive protostar in its pre- r aing(e.g.Hosokawa&Omukai2009).Itisroughlywhenthepro- UCHIIregionandpre-hotcorephase.Thisexceptionalobjectis tostarsreachthemainsequencethattheystarttodevelopultra- one of the best known examples of a dense core in monolithic compact (UC HII) regions which may then regulate and possi- collapsewithnosignofsub-fragmentationfrom0.1pcdownto bly stop further accretion, limiting the final mass of the stars. 500AU,althoughitcouldstillformaclosebinary. Massive protostars also form hot cores with large fractions of Molecular lines are important probes of the dense gas from collapsinggasradiativelywarmedover100K.Theyreleaseinto whichstarsformandhenceprovideimportantinsightforunder- thegasphasemolecularspeciespreviouslyfrozenongrainsand standingtheearliestphasesofstarformation.Oneofthemajor driveawarmgaschemistry.Itisnotclearwhetherthishotcore coolinglinesofthewarminterstellarmediumisthefar-infrared phase occurs before or at the same time as the development of finestructurelineofionizedcarbon(C+)at158µm.Itwasrec- anUCHIIregion.Byopeninglargeinnercavities,outflowsand ognized(Neufeldetal.2005)thatinthemoleculargasphaseof UCHIIregionsmayhelptoheatupalargefractionofcollapsing the interstellar medium, HF is the main fluor reservoir and that envelopes,leadingtowell-developedhotcores. CF+ could be a good indirect tracer of C+, which is not reach- Articlenumber,page1of6 A&Aproofs:manuscriptno.aa24718-14 ablefromground-basedfacilities.Thefirst(andonly)detections ofmm-transitionsofCF+ towardstheOrionBar(Neufeldetal. 11 CF+ 1-0 2006)andtheHorseheadnebula(Guzmanetal.2012)confirmed 8 these predictions and indicate that CF+ can trace C+ in photon 5 dominatedregions(PDRs). K] HerewepresentthefirstdetectionofCF+towardsaprotostar m 2 obtainedwithina0.8to3mmunbiasedspectralsurveyemploy- T [ 0 ingtheIRAM30mtowardsCygX-N63.InSect.2theobserva- -2 tions are detailed while results are provided in Sect. 3. Sect. 4 discussestheoriginofCF+detectionanditsimplications. -5 -8 -40 -30 -20 -10 0 10 20 30 Velocity [km/s] 2. Observationsanddatareduction We carried out an unbiased spectral survey with the IRAM 30 100 CF+ 2-1 m telescope on Pico Veleta, Spain, towards the source CygX- 80 N63,locatedat(RA,Dec) =(20h40m05.2s,41◦ 32(cid:48) 12.0(cid:48)(cid:48)). J2000 60 CygX-N63isanisolatedsingleobjectandcanthereforebeob- K] served without confusion within the beam of the IRAM 30m m40 (up to 30(cid:48)(cid:48) at 3mm). The observations were obtained between T [ 20 September2012andJanuary2014usingthewobblerswitching mode to assure good baselines, and covering so far the whole 0 1,2,and3mmbands(80−270GHz).TheEMIRreceiverwas -20 connected to the FTS backend at 195 kHz with settings, sepa- ratedby3.89GHztocoverthebandswitharedundancyof2.In -40 -30 -20 -10 0 10 20 30 Velocity [km/s] ordertodistinguishghostsfrombrightlinesintherejectedside- band, we observed each frequency as pairs of settings shifted Fig. 1. Spectra of the CF+ J = 1→0 and 2→1 lines on a main beam by20MHz.ThedatawerereducedwiththeGILDASpackage1. brightnesstemperaturescale.Thebluecurvesarethemodeledspectra Afterazeroth-orderbaseline,allspectrawereaveragedandcon- oftheCF+ linesandtheredcurveisthemodelforCF+ andCH CHO 3 vertedintomain-beamtemperature(T )usingtheforwardand together. mb main-beam efficiencies (Feff and Beff) listed in Table 1 leading to typical rms noise levels of 2.9, 4.2, and 8.6 mK for the 3, 2, and1mmband,respectively. 4. Discussionandconclusion + 4.1. FirstdetectionofCF towardsamassiveprotostar 3. Analysisandresults The CF+ ion is stable and is the second fluorine reservoir after + 3.1. LineidentificationanddetectionofCF (1-0) HFinPDRs.Itsformationrouteissimple(Neufeldetal.2005) TheanalysiswasperformedusingCASSIS2andtheCDMS3cat- F+H2→HF+H and HF+C+→CF++H, alogue.Weherereportacleardetection(6.2σ)oftheJ=1→0 wherebothHFandC+areabundant,i.e.attheinterfaceHI−H2 lineofCF+at102.59GHzatv =−4km/s.Theonlyotherline andmoregenerallywhereionizationisstrongenoughtoproduce ofCF+(J=2→1at205.17GHLzS)Rinourspectralcoveragecannot C+.CF+shouldbeanexcellentproxyforC+inpartiallyionized befirmlydetectedbecauseofblendingwithalineofCH CHO regions. CF+ has so far been detected only towards two bright 3 (11 -10 )(seeFig.1). PDRs:theOrionBarandtheHorseheadnebula.TheOrionBar 1110 1100 isanintensePDRpartlyseenedge-onleadingtoalargecolumn densityofCF+ (Neufeldetal.2006).TheHorseheadnebulaeis 3.2. Totalcolumndensityandexcitationtemperature a weaker PDR, but the interface is seen almost perfectly edge- on with a significant limb-brightening increasing the observed Using an excitation temperature of 10 K as in Neufeld et al. columndensityofCF+(Guzmánetal.2012). (2006)andGuzmánetal.(2012),assuminglocalthermodynam- Thepresentdetectionisthefirstdetectiontowardsanobject icalequilibrium(LTE)andopticallythinlines,wederiveatotal CF+ column density of 4×1011cm−2 (see Appendix A for de- whichismostlikelynotaPDR(seeSect.4.2).Itisaninteresting findingbecauseitthenpointstotheexistenceofasourceofC+ tails).Takingthe(2→1)linetentativedetectionasanupperlimit, insidetheCygX-N63core.Acolumndensityof4×1011cm−2in weobtainamaximumexcitationtemperatureof∼20K. a25(cid:48)(cid:48) FWHMbeamcorrespondstoatotalnumberofCF+ ions Thelinevelocityof–4kms−1 isexactlytherestvelocityof of1.2×1047.WiththeabundanceratioCF+/C+ oftheorderof the protostar (Bontemps et al. 2010), which suggests an origin 10−6 at high density and high UV field (see Fig. 4 in Neufeld fromtheprotostar.Thestudyoflineprofilessuggestsacorrela- etal.2006),itconvertstoatotalnumberofC+of1.2×1053.We tion between the line width and the spatial origin of molecules discussbelowthedifferentpossibilitiestoexplainthisamountof (Fechtenbaum et al. in prep.). The observed full width at half C+indirectlytracedbyCF+. maximum (FWHM) of 1.6 km s−1 points to an origin from the envelope. 4.2. APDRfrontdetectedatthedistanceofCygnusX? 1 http:/www.iram.fr/IRAMFR/GILDAS/ 2 http://cassis.irap.omp.eu/ SinceCygX-N63issituatedintherichCygnusXcomplexhost- 3 http://www.astro.uni-koeln.de/cgi-bin/cdmssearch ing a large number of OB stars, the detected CF+ could poten- Articlenumber,page2of6 S.Fechtenbaum etal.:FirstdetectionofCF+towardsahigh-massprotostar Table1.Observationparameters,GaussianfitsresultsandLTEmodelresults. Line Frequency Eup/k Aij Feff Beff Beam VLSR FWHM Tpeak Noise GHz K s−1 arcsec kms−1 kms−1 mK mK CF+(1-0) 102.587533 4.9235 4.82×10−6 0.94 0.79 25.5 -4.1±0.5a 1.6±0.5a 10.5a 2.3 CF+(2-1) 205.170520 14.7703 4.62×10−5 0.94 0.64 11.4 -4.1b 1.6b <62c 14.7 aGaussianfitresults bFixedequaltotheJ=1-0lineparameters cUpperlimit.LTEmodelingwitha25”sourcesize(beamsize)andanexcitationtemperatureof10KgivesTpeak=24mK. 4.3. AninnerCIIregiontowardsCygX-N63? CygX-N63isanOBstarinformation.Itisorwillsoonbecome astrongionizingsourceandastrongsourceofC+.Interestingly enough,however,CygX-N63isnotyetanUCHIIregion.Ithas not been detected in free-free emission with the VLA. CygX- N63 only coincides with a 2.3σ peak of 0.14 mJy at 8.4GHz (see Appendix B). Since carbon has a lower ionization energy (11.3ev)thanhydrogen(13.6ev),aC+ regioncanexistbefore thedevelopmentofanHIIregion. Withaluminosityof340L ,CygX-N63canhostaB5−B6 (cid:12) mainsequencestarofphotospherictemperature15000Kwitha carbonionizingflux(between11.3and13.6ev)of2.63×1045s−1 (Diaz-Miller et al. 1998). Assuming a r−2 law and having 44.3 M inside a FWHM of 2500 AU (Duarte-Cabral et al. 2013), (cid:12) wegetanH densityof1.95×1010×(r/100AU)−2cm−3.Using 2 the recombination rate of the UMIST database (McElroy et al. 2013),assumingallcarboninatomicformandthationizationis dominated by carbon, we can estimate the thickness of the CII region (see Appendix C for details). For this estimate we also neglect the effect of dust extinction on the ionizing radiation. Even with these strong assumptions the above carbon ionizing Fig.2. IRAM30mbeamat102GHz(greencircle)overlaidonaRGB fluxcanionizeathinlayerofonly0.1AUforaninternalradius (8,4.5,and3.6µm)SpitzerIRACimagetowardsCygX-N63.Contours of100AU(AppendixC).Suchathinlayerwouldonlycontain showthe250µmdustemissionfromHerschel(Hennemannetal.2012). 2.6×1050 ionizedcarbons,i.e.∼ 500timeslessthanobserved. No prominent PAH emission (red, 8µm) is detected towards CygX- Toincreasetheefficiencyoftheionization,theionizingradiation N63. needs to reach lower density layers where the recombination is lessefficientsothattherelativelyweakionizingradiationisable to keep a large amount of carbon ionized. The typical required tially originate from the PDR at the surface of the clump host- H densityis4×107cm−3 (seeAppendixC).Suchadensityis 2 ingCygX-N63,excitedbythemostnearbymassivestars.How- expected at large radii, of the order of 2000 AU, which cannot ever,CygX-N63islocatedinaquietpartofCygnusXwhereno beeasilyreachedbyinnerUVradiationbecauseoftheexpected nearbyOstarscanbedetected(theprojecteddistancetothecen- largedustextinctionfromtheinnerenvelope.SinceCygX-N63 tralregionsoftheCygnusOB2clusteris∼20-30pc).Incompar- drives an outflow (Duarte-Cabral et al. 2013), its envelope has ison,theOrionBarPDRissituatedatlessthan0.5pcfromthe bipolarcavities,andshouldhaveadisk-likestructureinthecen- O stars of the Orion nebula cluster. To detect such a weak CF+ tral regions that reduces extinction in the equatorial directions. line in Cygnus X, a PDR has to be bright and should therefore Itisdifficult,however,toexpectareducedenoughextinctionfor exhibitstrongPAHemissioninthemid-IR.InFig.2showinga ionizingradiationtoreach2000AU,whichisclosetothephys- three-colorSpitzerimage,oneseesthattheCygX-N63coreac- icalsizeoftheenvelope(seeBontempsetal.2010). tuallycoincideswithoneofthedarkestpartsoftheregionwith nosignofPAHred(8µm)emissionintheobservedbeam.Only somegreen(4.5µm)weakextendedfeaturesareseenprecisely 4.4. X-rayionizationfromanaccretionshock? coincidingwithCygX-N63.ItdoesnottraceaPDRfrontandis most probably due to outflow shock 4 from the strong CO out- CygX-N63 is actually a young protostar (Class 0) with a lumi- flowdrivenbyCygX-N63(seeSect.4.5).Thereisthereforeno nositydominatedbyaccretion.Anaccretionshockcreatesahot hintoftheexistenceofabrightPDRatthesurfaceoftheclump plasmawhichradiateshalfoftheaccretionpoweroutward.This whichwouldexplaintheobservedstrongsourceofC+. plasma has a typical temperature of 106K and mostly radiates inextremeUV,butalsoinX-rays.X-raysionizegasmoreeffi- cientlythandoesphotosphericradiation(e.g.Montmerle2001), 4 TherearenoPAHfeaturesat4.5µm.Suchstrongexcessesat4.5µm and are also less affected by extinction than UVs (Ryter 1996) areusuallyreferredtoasEGOs(extendedgreenobjects)andaredueto andcouldthusionizecarbondeeperintheenvelopedecreasing H lineemissioninoutflowshocks(e.g.Cyganowskietal.2008). theextinctionproblemdiscussedintheprevioussection.Alarge 2 Articlenumber,page3of6 A&Aproofs:manuscriptno.aa24718-14 fractionofX-rayionizationoriginatesfromlocallyemittedUV 4.6. ACIIregionwithoutHIIregion radiation(possiblydowntocarbonionizingphotons)asaresult In the two possible scenarios discussed above (Sects. 4.4 and oflocaldepositionofenergyfromphotoelectricelectronsgener- 4.5)theproducedUVradiationshouldionizefirsthydrogenand atedbyX-rays(Krolik&Kallman1983;Glassgoldetal.2000). ThishastheinterestingeffectthatX-rays,especiallyhigh-energy create an HII region which has, however, not been detected in X-rays, can propagate deep in the envelope, being less affected free-freeemission(Fig.B.1).Fordensitiesandsizesinvolvedin the accretion shock case the free-free emission has to be opti- byextinctionthanUVs,anddepositlocallytheirenergyasUV callythick.Wethenestimatethatthe5σupperlimitinfree-free ionizingradiation.ThetotalluminosityofCygX-N63couldrep- resentupto7.2×1046s−1ionizingphotonsforcarbon,assuming of0.3mJywouldcorrespondtoanemittingregionof∼ 20AU radius(seeAppendixD).TheCionizedregionisexpectedtobe thatalltheradiatedenergyisdedicatedtoCionization,whichis moreextendedthantheHIIregionandgiventheveryuncertain obviouslythemostoptimisticview.Usingthesameassumptions geometryanddensitydistribution,20AUcouldbeconsideredto as in Sect. 4.3, we find that the carbon ionized layer for an in- be roughly compatible with the 100AU scale discussed above. nercavityof100AUwouldthenbe2.6AUandwouldcontain 6.8×1051 ionized carbons, i.e. ∼ 20 times less than observed. In the outflow shock scenario, for a dissociative outflow shock withajetvelocityof200km/sandn =3×10−3cm−3,thefree- Thisisstillabitlow,butthediscrepancyisreducedcomparedto H Sect.4.3.Thelocaldensityrequiredtokeep1.2×1053 carbons freeemissionisopticallythinwithτff =5×10−4.Foranionizing ionized would be 1.1 × 109cm−3, i.e. ∼ 20 times lower than fluxof2×1044s−1,usingarecombinationrateof3×10−13ne−s−1 (Spitzer1978)andforfullionization(n =3×10−3cm−3),one the density at 100 AU in the pure spherical case. If the reach- e− getsEM =6.6×1056cm−3leadingto0.94mJyat8.4GHz(see abledensitycouldbeabitreduced,forinstanceatthesurfaceof V AppendixD).Thisisonlythreetimeslargerthanthe0.3mJyup- theoutflowcavities,asintheirradiatedoutflowwallscenarioof perlimitwiththeVLAwhichcouldbeseenasastillacceptable Brudereretal.(2009),theagreementcouldperhapsbereached, discrepancygiventhelargeuncertaintiesintheaboveestimates. providing that a significant fraction of the available energy can Wecanthereforeconcludethatinboththeaccretionandoutflow be transfered to carbon ionization as discussed above. The es- shocksscenariosaCIIregioncanbedetectedinCF+,whileno timate of the possible X-ray luminosity which could increase free-free emission has been detected in the accompanying HII byordersofmagnitudeduringaccretionbursts(seeMontmerle 2001andreferencestherein)andtheoverallefficiencyofX-ray region. ionization at R ∼ 100AU accounting for X-ray absorption in such a complex geometry are difficult to assess precisely. We 4.7. Anewprobeoftheearlyevolutionofmassiveprotostars canonlyconcludethattheionizingpowerexpectedfromanac- cretionshockmayreachtherightorderofmagnitudetoexplain Inconclusion,thefirstdetectionofCF+towardsamassiveproto- ourCF+detection. starmayprovideuswithanewtoolforinvestigatingtheionizing powerofaccretionandoutflowshocks.IncontrasttoC+ inthe far-IR,CF+inthemillimeterrangecanbeobservedathighspa- 4.5. Outflowshocks? tialresolutionwithinterferometer.Itcouldoffertheopportunity toimagethedevelopmentofC+regionseveninthecaseofnon- The last possible source of ionization is outflow shocks whose detectionofany HIIregion.Theindicationofapossiblestrong energyisextractedfromtheinnerregionsofthecollapsingen- X-rayand/orUVionizationalsohasimportantimplicationsfor velope. With a CO velocity of 40 km/s and an outflow force theearlychemicalevolutionincollapsingenvelopesinthecon- of 2.9×10−3M km/syr−1 (Duarte-Cabral et al. 2013), we get textoftheformationofahotcore. (cid:12) an outflow luminosity of 9.6L which could represent up to (cid:12) Acknowledgements. WethankV.WakelamforfruitfuldiscussionsandN.La- 2 × 1045s−1 carbon ionizing photons. Young jets are expected garde for reducing VLA data. This work is supported by the IdEx Bordeaux to radiate their energy through shocks. Three knots of 4.5 µm fundingandbytheprojectSTARFICH,fundedbytheFrenchNationalResearch emission (shocked H ) are indeed located in projection at only Agency(ANR).ADCacknowledgesfundingfromtheFP7ERCstartinggrant 2 ∼ 3.5(cid:48)(cid:48) from CygX-N63 (Fig. 2). These shocks should radi- projectLOCALSTAR. ate in UV (van Kempen et al. 2009). For an average projection angle of 57◦, the shocks would be then located at a radius of 9000AU from the protostar where the expected n density in H References theenvelopeis4.8×106cm−3(seeSect.4.3).Atthisdensityan ionizing flux of only 1.6×1044s−1 is required to keep ionized André, P. 1987, in Protostars and Molecular Clouds, ed. T. Montmerle & 1.2×1053carbons.Thisislessthantheavailableionizingpower C.Bertout,143 of 2×1045s−1. An attenuation of the ionizing UVs in the out- Bontemps,S.,Motte,F.,Csengeri,T.,&Schneider,N.2010,A&A,524,A18 Bruderer,S.,Benz,A.O.,Doty,S.D.,vanDishoeck,E.F.,&Bourke,T.L. flowcavitiesisexpected,butitisreducedtoonly0.24magfor 2009,ApJ,700,872 theexpecteddensity5 of3.0×103cm−3 inthecavitiesandfora Curiel,S.,Canto,J.,&Rodriguez,L.F.1987,Rev.MexicanaAstron.Astrofis., distance6 of4500AU.Theshocksintheoutflowmaythuspro- 14,595 videtherequiredamountofionizingphotonstoexplainourCF+ Curiel,S.,Rodriguez,L.F.,Bohigas,J.,etal.1989,AstrophysicalLettersand Communications,27,299 detection. Cyganowski,C.J.,Whitney,B.A.,Holden,E.,etal.2008,AJ,136,2391 Diaz-Miller,R.I.,Franco,J.,&Shore,S.N.1998,ApJ,501,192 Duarte-Cabral,A.,Bontemps,S.,&Motte,F.2013,A&A,558,A125 5 Forpressureequilibrium(Brudereretal.2009)andinfallandoutflow Glassgold,A.E.,Feigelson,E.D.,&Montmerle,T.2000,ProtostarsandPlanets velocities of 1 and 40 km/s respectively, the cavity density should be IV,429 (1/40)2of4.8×106cm−3,i.e.3.0×103cm−3 Guzmán,V.,Roueff,E.,Gauss,J.,etal.2012,A&A,543,L1 6 Foranoutflowopeningangleof60◦,thedistancetotheoutflowwalls Hennemann,M.,Motte,F.,Schneider,N.,etal.2012,A&A,543,L3 istypicallyof4500AU.FornH=3×103cm−3,thevisualextinctionAV Hosokawa,T.&Omukai,K.2009,A&A,691,823 isthenoftheorderof0.1magandtheUVextinctionof0.24magusing Krolik,J.H.&Kallman,T.R.1983,ApJ,267,610 theAUV/AVratioof2.4usedinBrudereretal.(2009). McElroy,D.,Walsh,C.,Markwick,A.J.,etal.2013,A&A,550,A36 Articlenumber,page4of6 S.Fechtenbaum etal.:FirstdetectionofCF+towardsahigh-massprotostar Montmerle,T.2001,inAstronomicalSocietyofthePacificConferenceSeries, Vol. 243, From Darkness to Light: Origin and Evolution of Young Stellar Clusters,ed.T.Montmerle&P.André,731 Motte,F.,Bontemps,S.,Schilke,P.,etal.2007,A&A,476,1243 Neufeld,D.,Wolfire,M.,&Schilke,P.2005,ApJ,628,260 Neufeld,D.A.,Schilke,P.,Menten,K.M.,etal.2006,A&A,454,L37 Rygl,K.L.J.,Brunthaler,A.,Sanna,A.,etal.2012,A&A,539,A79 Ryter,C.E.1996,Ap&SS,236,285 Schneider,N.,Bontemps,S.,Simon,R.,etal.2006,A&A,458,855 Spitzer,L.1978,Physicalprocessesintheinterstellarmedium(NewYorkWiley- Interscience) vanKempen,T.A.,vanDishoeck,E.F.,Güsten,R.,etal.2009,A&A,501,633 Yorke,H.&Sonnhalter,C.2002,ApJ,569,846 AppendixA: CASSISLTEmodeling CASSISprovidesaJythonscriptwhichminimizestheχ2tofind thebestparameterstoadjusttheobservations.Withaspectrumi ofNpoints,theχ2isderivedas (cid:88)N (I −I )2 χ2 = obs,j model,j , i rms2+cal2(I −I j=1 i i obs,j cont,j)2 whereI andI arerespectivelytheobservedandthemod- obs model eledintensities,I isthecontinuumintensity,cal thecalibra- cont i Fig.B.1.VLAimageat8.4GHzofthesameregionthaninFig.2with tionuncertaintyforthespectrumiandNisthetotalnumberof colorscalefrom-0.1to0.7mJy/beam.Thedashedellipseindicatesthe pointsofthespectrum.Thereducedχ2isthecalculatedas VLA primary beam and the green circle shows the IRAM 30m beam at 102 GHz. The rms in this image stays large, of the order of 0.06 1 N(cid:88)spectra χ2 mJy/beam,duetostrongsidelobesoriginatingfromtoDR22,astrong χ2red = Nspectra i=1 NNind −idof, rsaoduitoh)s.ource(acompactHIIregion)outsidetheimagedfield(∼5arcmin withN thenumberofspectra,N thenumberofindepen- spectra ind dentpoints,anddofthedegreeoffreedom. AppendixC: Carbonionizationequilibrium Theadjustableparametersarethecolumndensity,tempera- ture, FWHM, size of the source, and vLSR. In the case of CF+, Atequilibriuminsphericalgeometryfromaninitialradiusri to thecolumndensityvariesbetween1010 and1014 cm−2 with500 the radius of the CII region (where mostly all carbons are ion- steps;theotherparameterswerefixed.Thetemperaturewasset ized)rCII theequilibriumofcarbonionizationcanbeexpressed to10K,asinNeufeldetal.(2006)andGuzmánetal.(2012).The as FWHM was measured on the spectrum as 1.6 km/s. No source QCII =(cid:90) rCIIkrecnc+ne−4πr2dr, size was assumed, so we kept the 30 m beam size of 25”. The velocityofthesourceisaround-4km/s.CASSISalsotakesinto ri where Q is the total rate of ionizing photons (in s−1), k account the beam size variation as a function of the frequency. CII rec The obtained χ2 is 3.22 and the column density is (4 ± 1) × is the carbon recombination rate that we take as equal to red 2.36×10−12(T/300)−0.29exp(−17.7/T) cm3s−1 (UMIST 2012 1011cm−2. TheV andFWHMderivedfortheJ=1-0linearethen database McElroy et al. 2013), and nc+ and ne− are the densi- used to prLeSdRict the intensity of the J = 2 - 1 line. We detected ties of C+ and of electrons. For a large range of gas temper- ature (10 to 4000 K), k stays within a factor of less than 2 202CH CHOlinesinthewholecoverageandusedapopulation rec 3 aroundtheadoptedvalueof1.74×10−12s−1(rangingfrom1.08 diagram to derive a mean excitation temperature of 40 K and to2.80×10−12s−1withthemaximumobtainedat∼60K). a column density of 3 × 1013 cm−2. These values were used to IfcarbonionizationdominatesandassumingC+/Hequalto modeltheCH CHOlinesasshowninthebottompanelofFig. 3 thestandardC/Hratioof1.6×10−4 (ifmostofthecarbonisin 1. atomicform),wehavene− = nC+ = 1.6×10−4×nH.Assuming ar−2 densitylawandhaving44.3M insideaFWHMof2500 (cid:12) AppendixB: VLAobservations AU (Duarte-Cabral et al. 2013), we here get an H2 density of 1.95×1010×(r/100AU)−2cm−3.Forthissimplemodel,weget CygX-N63 was observed on 27 April 2003 with the 27 anten- the following expression of the extent of the ionized region in nasoftheVLAinDconfigurationat8.4GHz(bandX)(project theinnerenvelope, AB1073). The image shown in Fig. B.1 corresponds to a total integration time of 25 mins spread over 4.5 hr (track sharing r Q r = i with η= CII , technique to improve UV coverage). It has been cleaned with CII 1−ηr 2.85×1050s−1 i thecleanalgorithmofAIPS.Theresultingrmsisequalto60.2 µJy/beam. andtheradiiexpressedinAU.ForthecaseofSect.4.3(Q = CII InthedirectionofCygX-N63,aweakpeakof0.14mJy,i.e. 2.63×1045s−1),onegetsaverysmallvalueof9.4×10−6 forη. at a level of 2.3σ, is found. Below 3σ it cannot be considered For r = 100AU, r is then equal to 100.1 AU. Only the very i CII as apossible detection, especiallybecause theside lobes (large firstlayersareionizedforvaluesofQ significantlylowerthan CII stripesintheimageofFig.B.1)areroughlyofthesameintensity. ∼1050s−1. Articlenumber,page5of6 A&Aproofs:manuscriptno.aa24718-14 Theionizationequilibriumcanalsobeexpressedas (cid:90) rCII QCII = krecne−dNc+ ri with Nc+ being the number of ionized carbons. It shows that k n isthefractionofionizedcarbonsthatrecombinespersec- rec e− ond.Forn = 1.6×10−4 ×n ,wecanthenderivethetypical e− H density(assumingconstantdensity)requiredtokeepanamount ofionizedcarbonNc+ ionizedunderanionizingrateQCII.Here istheexpressionofthisdensitynCII forouradoptednumerical H values: Q nCII =3.6×1015 CII cm−3. H Nc+ ForthecaseofSect.4.3with QCII = 2.63×1045s−1 and Nc+ = 1.2×1053,onegetsnCII =7.9×107cm−3. H AppendixD: Centimetricfree-freeemission As discussed in Sect. 4.6, any ionized gas is expected to emit free-freeemission. The centimetric flux of free-free emission in the optically thin case can be expressed as a function of EM , the emission V measure(seeAndré1987;Curieletal.1987), (cid:18) S (cid:19) (cid:18) EM (cid:19)(cid:18) T (cid:19)−0.35(cid:18) ν (cid:19)−0.1(cid:18) d (cid:19)−2 ν =1.41 V e mJy 1057cm−3 104K 8.4GHz 1.4kpc with (cid:90)(cid:90)(cid:90) EM ≡ n2dV. V e The optical depth is expressed as a function of the linear emis- (cid:82) sionmeasureEM (≡ n2dl), L e (cid:18) EM (cid:19)(cid:18) T (cid:19)−1.35(cid:18) ν (cid:19)−2.1 τ ∼1.22 L e , ν 1027cm−5 104K 8.4GHz which is equal to ∼ 8.8×106 for n = n = 2.2×109cm−3, e− H l = 100AU (see Sect. 4.4), 104K (the opacity is even larger for lower temperatures) and at 8.4GHz (frequency of the VLA observationfromAppendixB). Intheopticallythickcasetheemissiondependsonthearea ofemissionexpressedinphysicalsurfaceA ifdistancescaling em isincluded, (cid:18) S (cid:19) A (cid:18) T (cid:19) (cid:18) ν (cid:19)2(cid:18) d (cid:19)−2 ν =2.60 em e , mJy (100au)2 104K 8.4GHz 1.4kpc whichisequalto0.3mJyfor A = πR 2 withR = 19.2AU em em em (Sect.4.4). Curiel et al. (1987, 1989) also expressed the expected flux andopticaldepthinthecaseofadissociativeshockasafunction ofpre-shockdensityn andshockvelocityV (forV (cid:38)60km/s), 0 s s (cid:18) n (cid:19)(cid:18) V (cid:19)1.68(cid:18) T (cid:19)−0.55(cid:18) ν (cid:19)−2.1 τ ∼5.22×10−4 0 s e , ν 104cm−3 100km.s−1 104K 8.4GHz whichisfoundequalto5×10−4 forn = 3×10−3cm−3,V = 0 s 200km/s(seeSect.4.5),104Kandat8.4GHz. Articlenumber,page6of6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.