ebook img

First course in abstract algebra: with applications PDF

629 Pages·2005·4.296 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview First course in abstract algebra: with applications

Special Notation Set Theory and Number Theory (cid:0) naturalnumbers........................................1 (cid:1) integers................................................1 n binomialcoefficient....................................18 r x greatestintegerinx....................................25 b(cid:0) c(cid:1) 8 .x/ dthcyclotomicpolynomial.............................29 d (cid:30).n/ Euler(cid:30)-function ...................................... 30 (cid:2) rationalnumbers...................................... 34 (cid:3) realnumbers..........................................34 (cid:4) complexnumbers......................................35 a b a isadivisorofb......................................37 j .a;b/ gcdofa andb.........................................37 a;b lcmofa andb ........................................ 55 T U a b modm a congruenttobmodm................................57 (cid:17) X Y X issubsetofY .......................................81 (cid:18) X Y X ispropersubsetofY.................................81 (cid:5) (cid:6) emptyset.............................................81 X Y cartesianproduct......................................84 (cid:2) 1 identityfunctiononset X ..............................84 X X numberofelementsinfiniteset X.......................84 j j im f imageoffunction f ................................... 85 f a b f.a/ b.............................................86 V 7! D a b a isequivalenttob .................................... 96 (cid:17) a equivalenceclassofa .................................97 T U a congruenceclassofa.................................168 T U (cid:7) m integersmodulom....................................168 i x ;::;x ;::;x x ;:::;x withx deleted.............................330 1 i n 1 n i (cid:14) Kroneckerdelta......................................370 ij b Group Theory S symmetricgrouponset X.............................103 X S symmetricgrouponn letters.......................... 103 n sgn.(cid:11)/ signumofpermutation(cid:11)..............................117 GL.n;k/ generallineargroup..................................128 Isom.(cid:3) 2/ groupofisometriesoftheplane........................136 O2.(cid:3) / orthogonalgroupoftheplane..........................136 D dihedralgroupoforder2n.............................141 2n 6.2;R/ stochasticgroup......................................144 V four-group...........................................145 H G H issubgroupofG...................................145 (cid:20) H < G H ispropersubgroupofG............................145 A alternatinggrouponn letters..........................147 n aH coset................................................151 G H indexof H inG......................................153 T V U SL.n;k/ speciallineargroup...................................154 G H isomorphic.......................................... 156 (cid:24) D ker f kernelof f ..........................................160 H G H isnormalsubgroupofG............................161 (cid:0) Z.G/ centerofgroupG ....................................163 Q quaterniongroupoforder8 ........................... 164 G=H quotientgroup.......................................176 H K directproduct........................................183 (cid:2) G stabilizerofx ........................................194 x (cid:1) .x/ orbitofx ............................................194 C .a/ centralizerofa G ..................................195 G 2 GL.V/ allautomorphismsofvectorspaceV ...................381 H K directsum...........................................473 n(cid:8)S sumofsubgroups .................................... 477 i 1 i nD S directsum...........................................477 i 1 i PND.H/ normalizerof H G.................................489 G L (cid:20) UT.n;k/ unitriangulargroup...................................493 Commutative Rings and Linear Algebra I or I identitymatrix.......................................128 n (cid:1) i Gaussianintegers.....................................217 T U (cid:2) .(cid:3) / ringoffunctionson(cid:3) ................................ 222 (cid:0) .X/ Booleanring.........................................226 U.R/ groupofunitsinring R...............................226 (cid:2) .R/ ringoffunctionsonring R............................227 (cid:1) p; (cid:1) q finitefieldhaving p,orq,elements .................... 228 Frac.R/ fractionfieldofdomain R.............................231 R nonzeroelementsinring R............................232 (cid:2) deg.f/ degreeofpolynomial f.x/............................233 k x polynomialringoverk................................237 T U k.x/ fieldofrationalfunctionsoverk .......................238 k x powerseriesringoverk...............................240 TT UU R S isomorphic.......................................... 241 (cid:24) D .a ;:::;a / idealgeneratedbya ;:::;a ..........................246 1 n 1 n .a/ principalideal........................................246 R S directproduct........................................249 (cid:2) a I coset................................................290 C R=I quotientring.........................................291 k.z/ adjoiningz tofieldk..................................297 A B Hadamardproduct....................................306 (cid:14) A B Kroneckerproduct....................................309 (cid:10) Mat .k/ alln n matricesoverk..............................323 n AT transp(cid:2)ose............................................325 Row.A/ rowspaceofmatrix A ................................329 Col.A/ columnspaceofmatrix A.............................329 dim.V/ dimensionofvectorspace.............................336 E=k fieldextension.......................................341 E k degreeoffieldextension E=k..........................341 T V U Hom .V;W/ alllineartransformationsV W ..................... 367 k ! T matrixoftransformationT relativetobases X,Y ........370 Y X T U det.A/ determinant..........................................385 tr.A/ trace................................................392 Supp.w/ supportofw kn ....................................408 2 Gal.E=k/ Galoisgroupof E=k..................................452 Var.I/ algebraicsetofideal I ................................540 Id.V/ idealofalgebraicsetV ............................... 544 pI radicalofideal I .....................................545 DEG.f/ multidegreeofpolynomial f.x1;:::;xn/...............559 A FIRST COURSE IN ABSTRACT ALGEBRA Third Edition JOSEPH J. ROTMAN University of Illinois at Urbana-Champaign PRENTICEHALL,UpperSaddleRiver,NewJersey07458 To mytwo wonderfulkids, DannyandElla, whomIloveverymuch Contents SpecialNotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Preface tothe ThirdEdition . . . . . . . . . . . . . . . . . . . . . viii Chapter1 NumberTheory . . . . . . . . . . . . . . . . . . . . . 1 Section1.1 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section1.2 BinomialCoefficients . . . . . . . . . . . . . . . . . . . 16 Section1.3 GreatestCommonDivisors . . . . . . . . . . . . . . . . 34 Section1.4 TheFundamentalTheoremofArithmetic . . . . . . . . . 53 Section1.5 Congruences . . . . . . . . . . . . . . . . . . . . . . . . 57 Section1.6 DatesandDays . . . . . . . . . . . . . . . . . . . . . . 72 Chapter2 GroupsI . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Section2.1 SomeSetTheory . . . . . . . . . . . . . . . . . . . . . . 80 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 EquivalenceRelations . . . . . . . . . . . . . . . . . . . . . . . . 96 Section2.2 Permutations . . . . . . . . . . . . . . . . . . . . . . . . 103 Section2.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Section2.4 SubgroupsandLagrange’sTheorem . . . . . . . . . . . 144 Section2.5 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . 155 Section2.6 QuotientGroups . . . . . . . . . . . . . . . . . . . . . . 168 Section2.7 GroupActions . . . . . . . . . . . . . . . . . . . . . . . 189 Section2.8 CountingwithGroups . . . . . . . . . . . . . . . . . . . 205 Chapter3 CommutativeRings I . . . . . . . . . . . . . . . . . 214 v vi CONTENTS Section3.1 FirstProperties . . . . . . . . . . . . . . . . . . . . . . . 214 Section3.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Section3.3 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 232 Section3.4 Homomorphisms . . . . . . . . . . . . . . . . . . . . . . 240 Section3.5 GreatestCommonDivisors . . . . . . . . . . . . . . . . 250 EuclideanRings . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 Section3.6 UniqueFactorization. . . . . . . . . . . . . . . . . . . . 272 Section3.7 Irreducibility . . . . . . . . . . . . . . . . . . . . . . . . 278 Section3.8 QuotientRingsandFiniteFields . . . . . . . . . . . . . 288 Section3.9 Officers,Magic,Fertilizer,andHorizons . . . . . . . . . 305 Officers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 Magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 Fertilizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 Chapter 4 LinearAlgebra . . . . . . . . . . . . . . . . . . . . . 321 Section4.1 VectorSpaces . . . . . . . . . . . . . . . . . . . . . . . 321 GaussianElimination . . . . . . . . . . . . . . . . . . . . . . . . 345 Section4.2 EuclideanConstructions . . . . . . . . . . . . . . . . . . 354 Section4.3 LinearTransformations . . . . . . . . . . . . . . . . . . 367 Section4.4 Determinants . . . . . . . . . . . . . . . . . . . . . . . . 385 Section4.5 Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 BlockCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 LinearCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 Chapter 5 Fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 Section5.1 ClassicalFormulas . . . . . . . . . . . . . . . . . . . . . 430 Vie`te’sCubicFormula . . . . . . . . . . . . . . . . . . . . . . . 443 Section5.2 InsolvabilityoftheGeneralQuintic . . . . . . . . . . . . 447 FormulasandSolvabilitybyRadicals . . . . . . . . . . . . . . . 458 TranslationintoGroupTheory . . . . . . . . . . . . . . . . . . . 460 Section5.3 Epilog . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 Chapter 6 GroupsII . . . . . . . . . . . . . . . . . . . . . . . . . 473 Section6.1 FiniteAbelianGroups . . . . . . . . . . . . . . . . . . . 473 Section6.2 TheSylowTheorems . . . . . . . . . . . . . . . . . . . 487 Section6.3 OrnamentalSymmetry . . . . . . . . . . . . . . . . . . . 498 Chapter 7 CommutativeRingsII . . . . . . . . . . . . . . . . . 516 Section7.1 PrimeIdealsandMaximalIdeals . . . . . . . . . . . . . 516 Section7.2 UniqueFactorization. . . . . . . . . . . . . . . . . . . . 522 Section7.3 NoetherianRings . . . . . . . . . . . . . . . . . . . . . 532 CONTENTS vii Section7.4 Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . 538 Section7.5 Gro¨bnerBases . . . . . . . . . . . . . . . . . . . . . . . 556 MonomialOrders . . . . . . . . . . . . . . . . . . . . . . . . . . 557 GeneralizedDivisionAlgorithm . . . . . . . . . . . . . . . . . . 564 Gro¨bnerBases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569 AppendixA Inequalities . . . . . . . . . . . . . . . . . . . . . . . 581 AppendixB Pseudocodes . . . . . . . . . . . . . . . . . . . . . . 583 HintsforSelected Exercises . . . . . . . . . . . . . . . . . . . . . 587 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 Preface to the Third Edition A First Course in Abstract Algebra introduces groups and commutative rings. GrouptheorywasinventedbyE.Galoisintheearly1800s,whenheusedgroups tocompletelydeterminewhentherootsofpolynomialscanbefoundbyformulas generalizingthequadraticformula. Nowadays,groupsaretheprecisewaytodis- cussvarioustypesofsymmetry,bothingeometryandelsewhere. Besidesintro- ducingGalois’ideas,wealsoapplygroupstosomeintricatecountingproblems aswellastotheclassificationoffriezesintheplane. Commutativeringsprovide the proper contextin which to study number theory as well as manyaspects of thetheoryofpolynomials. Forexample,generalizationsofideassuchasgreatest commondivisorandmodulararithmeticextendeffortlesslytopolynomialrings overfields. Applicationsincludepublicaccesscodes,finitefields,magicsquares, Latinsquares,andcalendars. Wethenconsidervectorspaceswithscalarsinar- bitrary fields (not just the reals), and this study allows us to solve the classical Greek problems concerning angle trisection, doubling the cube, squaring the circle, and construction of regular n-gons. Linear algebra over finite fields is appliedtocodes,showinghowonecanaccuratelydecodemessagessentovera noisy channel (for example, photographs sent to Earth from Mars or from Sat- urn). Here, one sees finite fields being used in an essential way. In Chapter 5, we give the classical formulas for the roots of cubic and quartic polynomials, after which both groups and commutative rings together are used to prove Ga- lois’ theorem (polynomials whose roots are obtainable by such formulas have solvableGaloisgroups)andAbel’s theorem(thereis nogeneralizationof these formulastopolynomialsofhigherdegree).ThisisonlyanintroductiontoGalois theory; readers wishing to learn more of this beautiful subject will have to see a more advancedtext. For those readers whose appetiteshavebeen whettedby theseresults,thelasttwochaptersinvestigategroupsandringsfurther: weprove the basis theorem for finite abeliangroups and the Sylowtheorems, and we in- troduce the study of polynomials in several variables: varieties; Hilbert’s basis viii PREFACETOTHETHIRDEDITION ix theorem, the Nullstellensatz, and algorithmic methods associated with Gro¨bner bases. Letmementionsomenewfeaturesofthisedition. Ihaverewrittenthetext, addingmoreexercises,andtryingtomaketheexpositionmoresmooth. Thefol- lowingchangesinformatshouldmakethebookmoreconvenienttouse. Every exerciseexplicitlycitedelsewhereinthetextismarkedbyanasterisk;moreover, everycitationgivesthepagenumberonwhichthecitedexerciseappears. Hints for certain exercisesare in a section at the endof the book so that readers may consider problems on their own before reading hints. One numbering system enumerates all lemmas, theorems, propositions, corollaries, and examples, so thatfindingbackreferencesiseasy. ThereareseveralpagesofSpecialNotation, givingpagenumberswherenotationisintroduced. Today, abstractalgebra is viewedas a challengingcourse; manybright stu- dents seem to have inordinate difficulty learning it. Certainly, they must learn to think in a new way. Axiomatic reasoning may be new to some; others may bemorevisuallyoriented. Somestudentshaveneverwrittenproofs;othersmay haveoncedoneso,buttheirskillshaveatrophiedfromlackofuse. Butnoneof theseobstaclesadequatelyexplainstheobserveddifficulties. Afterall,thesame obstacles exist in beginning real analysis courses, but most students in these coursesdolearnthematerial,perhapsaftersomeearlystruggling. However,the difficulty of standard algebra courses persists, whether groups are taught first, whetherringsaretaughtfirst,orwhethertextsarechanged. Ibelievethatama- jor contributing factor to the difficulty in learning abstract algebra is that both groupsandringsareintroducedinthefirstcourse;assoonasastudentbeginsto be comfortable withone topic, it is droppedto study the other. Furthermore, if one leaves group theory or commutativering theory before significant applica- tionscanbegiven,thenstudentsareleftwiththefalseimpressionthatthetheory iseitherofnorealvalueor,morelikely,thatitcannotbeappreciateduntilsome future indefinite time. (Imagine a beginning analysis course in which both real and complex analysis are introduced in one semester.) If algebra is taught as a one-year (two-semester) course, there is no longer any reason to crowd both topics into the first course, and a truer, more attractive, picture of algebra is presented. Thisoptionismorepracticaltodaythaninthepast,forthemanyap- plicationsofabstractalgebrahaveincreasedthenumbersofinterestedstudents, manyofwhomareworkinginotherdisciplines. Ihaverewrittenthistextfortwoaudiences. Thisneweditioncanserveasa textfor thosewhowishto continueteachingthecurrentlypopulararrangement ofintroducingbothgroupsandringsin thefirst semester. As usual,onebegins bycoveringmostofChapter1,afterwhichonechoosesselectedpartsofChap- ters2and3,dependingonwhethergroupsorcommutativeringsaretaughtfirst. Chapters2and3havebeenrewritten,andtheyarenowessentiallyindependent

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.