ebook img

Finite Fields and Their Applications PDF

289 Pages·2013·1.881 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Finite Fields and Their Applications

PascaleCharpin,AlexanderPott,ArneWinterhof(Eds.) FiniteFieldsandTheirApplications Radon Series on Computational and Applied Mathematics Managing Editor Heinz W. Engl,Linz/Vienna, Austria Editorial Board Hansjörg Albrecher, Lausanne, Switzerland Ronald H. W. Hoppe, Houston, USA Karl Kunisch, Linz/Graz, Austria Ulrich Langer, Linz, Austria Harald Niederreiter, Linz, Austria Christian Schmeiser, Vienna, Austria Volume 11 Finite Fields and Their Applications Character Sumsand Polynomials Edited by Pascale Charpin Alexander Pott Arne Winterhof 2010MathematicsSubjectClassification 11BXX,11CXX,11KXX,11LXX,11TXX,12CXX,12YXX,37PXX,51EXX,94AXX Editors PascaleCharpin ResearchDirectorSECRET Inria Rocquencourt,France [email protected] AlexanderPott ProfessorforDiscreteMathematics InstituteforAlgebraandGeometry(IAG) FacultyofMathematics Magdeburg,Germany [email protected] ArneWinterhof ProjectLeaderAppliedDiscreteMathematicsandCryptography JohannRadonInstituteforComputationalandAppliedMathematics(RICAM) AustrianAcademyofSciences Linz,Austria [email protected] ISBN978-3-11-028240-5 e-ISBN978-3-11-028360-0 Set-ISBN978-3-11-028361-7 ISSN1865-3707 LibraryofCongressCataloging-in-PublicationData ACIPcatalogrecordforthisbookhasbeenappliedforattheLibraryofCongress. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie;detailed bibliographicdataareavailableintheInternetathttp://dnb.dnb.de. ©2013WalterdeGruyterGmbH,Berlin/Boston Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com Preface ThisbookisbasedontheinvitedtalksoftheRICAM-WorkshoponFiniteFieldsand TheirApplications:CharacterSumsandPolynomialsheldattheFederalInstitutefor AdultEducation(BIfEB)inStrobl,Austria,fromSeptember2–7,2012. The topic of the book is the theory of finite fields. Finite fields play important rolesinmanyapplicationareassuchascodingtheory,cryptography,MonteCarloand quasi-MonteCarlomethods,pseudorandomnumbergeneration, quantumcomputing, andwirelesscommunication.Inthisbookwewillfocusonsequences,charactersums, andpolynomialsoverfinitefieldsinviewoftheabovementionedapplicationareas. Thegoalofthisbookistogiveanoverviewofseveralrecentresearchdirectionsas wellastostimulateresearchinsequencesandpolynomialsundertheunifiedframe- workofcharactertheory. Chapters1and2dealwithsequencesmainlyconstructedviacharactersandana- lyzedusingboundsoncharactersums.InChapter1measuresofpseudorandomness inviewofapplicationstowirelesscommunicationarementioned,whereasChapter2 containsasurveyonmeasuresofpseudorandomnessfromamoretheoreticalpoint ofviewwherecryptographymaybethemostimportantapplicationarea. Chapters3,5,and6dealwithpolynomialsoverfinitefields. Chapter3givesan overviewaboutresults onpolynomialswith someproperties described. Chapters5 and6discusspolynomialswhicharesuitableforcryptographicapplications. Chap- ters 4and9considerproblemsrelated tocodingtheory studiedviafinitegeometry andadditivecombinatorics,respectively.Chapter7dealswithquasirandompointsin viewofapplicationstonumericalintegrationusingquasi-MonteCarlomethodsand simulation. Chapter8studiesaspectsofiterationsofrationalfunctionsfromwhich pseudorandom numbers for Monte Carlo methods can be derived. For Monte Car- loandquasi-Monte Carlomethods uniformlydistributed sequences areneeded. In manycasesameasurefortheuniformdistribution,thediscrepancy,canbeestimat- edintermsofadditivecharactersums. Allthesechapterswerereviewedandwewishtothanktheanonymousreferees fortheirprecioushelp. Wealsothanktheotherparticipantsoftheworkshoplistedbelowwhocontribut- ed withexcellent talksandmadethe workshopagreatsuccess: Jürgen Bierbrauer, HeriveltoBorges,NinaBrandstätter,ClaudeCarlet,FrancisCastro,AycaCesmelioglu, StephenD.Cohen,DomingoGomez-Perez,CemGüneri,JingHe,PeterHellekalek,Tor Helleseth,RoswithaHofer,LeylaIsik,JonathanJedwab,GiorgosKapetanakis,Daniel Katz,AlexanderKholosha,PeterKritzer,MichelLavrauw,VsevolodLev,PetrLisonek, Florian Luca, Christian Mauduit, Wilfried Meidl, Sihem Mesnager, Sylvia Morris, GaryMullen, FerruhÖzbudak, BuketÖzkaya, DanielPanario,Gottlieb Pirsic,Clau- dioQureshi,AndrasSarközy,Kai-UweSchmidt,JohnSheekey,HenningStichtenoth, vi Preface ValentinSuder,DavidThomson,AlevTopuzoglu,SimoneUgolini,Christiaanvande Woestijne,JoachimvonzurGathen,QiWang,andQiangWang. Moredetailsonthisworkshopcanbefoundonthewebpagehttp://www.ricam. oeaw.ac.at/events/workshops/ffta2012/ We also thank the Radon Institute for Computational and Applied Mathemat- ics (RICAM) of the Austrian Academy of Sciences for financial support, BIfEB for theirhospitality,thepublisherforthepleasantcooperation,ourco-organizersGary Mullen,HaraldNiederreiter,andDanielPanario,andlastbutnotleastAnnetteWeihs andWolfgangForsthuberfortheirgreatsupportduringthepreparationofthework- shop. Paris,Magdeburg,andLinz,December2012 PascaleCharpin AlexanderPott ArneWinterhof Contents Preface v GuangGong CharacterSumsandPolyphaseSequenceFamilieswithLowCorrelation, DiscreteFourierTransform(DFT),andAmbiguity 1 1 Introduction 1 2 BasicDefinitionsandConcepts 2 2.1 Notations 2 2.2 PolynomialFunctionsoverF 3 q 2.3 CharactersofFiniteFields 4 2.4 TheWeilBoundsonCharacterSums 4 3 Correlation,DFT,andAmbiguityFunctions 5 3.1 OperatorsonSequences 5 3.2 CorrelationFunctions 6 3.3 AmbiguityFunctions 8 3.4 ConvolutionandCorrelation 10 3.5 OptimalCorrelation,DFT,andAmbiguity 10 4 PolyphaseSequencesforThreeMetrics 11 4.1 SequencesfromtheAdditiveGroupofZ and N theAdditiveGroupofZ 11 p 4.1.1 Frank–Zadoff–Chu(FZC)Sequences 11 4.1.2 AnotherClassforZ 13 N 4.1.3 SequencesfromF AdditiveCharacters 13 p 4.2 SequencesfromF MultiplicativeCharacters 13 p 4.3 SequencesfromF AdditiveCharacters 15 q 4.4 SequencesfromF MultiplicativeCharacters 17 q 4.5 SequencesDefinedbyIndexingFieldElementsAlternatively 20 5 SequenceswithLowDegreePolynomials 22 5.1 MethodsforGeneratingSignalSetsfromaSingleSequence 22 5.2 SequenceswithLowOddDegreePolynomials 23 5.2.1 F AdditiveSequenceswithLowOddDegreePolynomials 23 q 5.2.2 F MultiplicativeSequenceswithLowOddDegreePolynomials 25 q 5.3 SequencesfromPowerResidueandSidel’nikovSequences 26 5.3.1 InterleavedStructureofSidel’nikovSequences 26 5.3.2 SequencesfromLinearand/orQuadratic/InversePolynomials 27 5.4 SequencesfromHybridCharacters 29 5.4.1 SequencesUsingWeilRepresentationandTheirGeneralizations 29 5.4.2 GeneralizationtoF HybridSequences 30 q 5.5 ANewConstruction 32 viii Contents 6 Two-LevelAutocorrelationSequencesandDoubleExponential Sums 33 6.1 PrimeTwo-LevelAutocorrelationSequences 33 6.2 HadamardTransform,Second-OrderDecimation-HadamardTransform, andHadamardEquivalence 34 6.3 ConjecturesonTernary2-LevelAutocorrelationSequences 35 7 SomeOpenProblems 37 7.1 CurrentStatusoftheConjecturesonTernary2-Level Autocorrelation 37 7.2 PossibilityofMultiplicativeSequenceswithLowAutocorrelation 38 7.3 ProblemsinFourAlternativeClassesofSequencesandtheGeneral HybridConstruction 38 8 Conclusions 38 KatalinGyarmati MeasuresofPseudorandomness 43 1 Introduction 43 2 DefinitionofthePseudorandomMeasures 44 3 TypicalValuesofPseudorandomMeasures 46 4 MinimumValuesofPseudorandomMeasures 47 5 ConnectionbetweenPseudorandomMeasures 49 6 Constructions 50 7 FamilyMeasures 52 8 LinearComplexity 54 9 MultidimensionalTheory 56 10 Extensions 57 SophieHuczynska ExistenceResultsforFiniteFieldPolynomialswithSpecifiedProperties 65 1 Introduction 65 2 ASurveyofKnownResults 66 2.1 NormalBases 67 2.2 PrimitiveNormalBases 68 2.3 PrescribedCoefficients 70 2.4 PrimitivePolynomials:PrescribedCoefficients 70 2.5 PrimitiveNormalPolynomials:PrescribedCoefficients 73 3 ASurveyofMethodologyandTechniques 75 3.1 BasicApproach 76 3.2 Ap-adicApproachtoCoefficientConstraints 78 3.3 TheSievingTechnique 81 4 Conclusion 83 Contents ix DieterJungnickel IncidenceStructures,Codes,andGaloisGeometries 89 1 Introduction 89 2 GaloisClosedCodes 91 3 ExtensionCodesofSimplexandFirst-OrderReed–MullerCodes 93 4 SimpleIncidenceStructuresandTheirCodes 97 5 EmbeddingTheorems 99 6 DesignswithClassicalParameters 105 7 Two-WeightCodes 108 8 SteinerSystems 109 9 Configurations 111 10 ConclusionandOpenProblems 113 GoharM.Kyureghyan SpecialMappingsofFiniteFields 117 1 Introduction 117 2 DifferentNotionsforOptimalNon-linearity 120 2.1 AlmostPerfectNonlinear(APN)Mappings 121 2.2 BentandAlmostBent(AB)Mappings 124 3 FunctionswithaLinearStructure 125 4 CrookedMappings 128 5 PlanarMappings 130 6 SwitchingConstruction 133 7 ProductsofLinearizedPolynomials 137 FernandoHernandoandGaryMcGuire OnTheClassificationofPerfectNonlinear(PN)andAlmostPerfectNonlinear(APN) MonomialFunctions 145 1 Introduction 145 2 BackgroundandMotivation 146 2.1 PNandPlanarFunctions 146 2.2 APNFunctions 148 3 OutlineofAPNFunctionsClassificationProof 149 3.1 SingularitiesinAPNcase 151 3.2 AWarm-UpCase 153 4 PNFunctionsClassificationProof:AnalysisofSingularities 154 4.1 SingularPointsinCase(b.1) 156 4.2 SingularPointsatInfinity 157 4.3 TheMultiplicities 159 4.4 FurtherAnalysis 159 4.5 Type(i) 161

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.