FINANCIAL MATHEMATICS A Practical Guide for Actuaries and other Business Professionals Second Edition CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevin Shand, FSA, FCIA Assistant Professor Warren Centre for Actuarial Studies and Research Contents 1 Interest Rates and Factors 2 1.1 Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Simple Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Compound Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Accumulated Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Present Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Rate of Discount: d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.7 Constant Force of Interest: δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.8 Varying Force of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.9 Discrete Changes in Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Exercises and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Level Annuities 21 2.1 Annuity-Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Annuity–Due . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 Deferred Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Continuously Payable Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5 Perpetuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 Equations of Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Exercises and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Varying Annuities 58 3.1 Increasing Annuity-Immediate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Increasing Annuity-Due . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3 Decreasing Annuity-Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 Decreasing Annuity-Due . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.5 Continuously Payable Varying Annuities . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6 Compound Increasing Annuities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.7 Continuously Varying Payment Streams . . . . . . . . . . . . . . . . . . . . . . . . 74 3.8 Continuously Increasing Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.9 Continuously Decreasing Annuities . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Exercises and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 Non-Annual Interest Rate and Annuities 88 4.1 Non-Annual Interest and Discount Rates . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2 Nominalpthly Interest Rates: i(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.3 Nominalpthly Discount Rates: d(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Annuities-Immediate Payable pthly . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.5 Annuities-Due Payablepthly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Exercises and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Project Appraisal and Loans 108 5.1 Discounted Cash Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2 Nominalvs. Real Interest Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.3 Investment Funds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.4 Allocating Investment Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5 Loans: The Amortization Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.6 Loans: The Sinking Fund Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 1 Exercises and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6 Financial Instruments 132 6.1 Types of FinancialInstruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.1.1 Money Market Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.1.2 Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.3 CommonStock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1.4 Preferred Stock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.5 Mutual Funds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.6 Guaranteed Investment Contracts (GIC) . . . . . . . . . . . . . . . . . . . . 134 6.1.7 Derivative Sercurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.2 Bond Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.3 Stock Valuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Exercises and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 7 Duration, Convexity and Immunization 156 7.1 Price as a Function of Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.2 Modified Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 7.3 Macaulay Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.4 Effective Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.5 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.5.1 Macaulay Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.5.2 Effective Convexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7.6 Duration, Convexity and Prices: Putting it all Together . . . . . . . . . . . . . . . 160 7.6.1 Revisiting the Percentage Change in Price . . . . . . . . . . . . . . . . . . . 160 7.6.2 The Passage of Time and Duration . . . . . . . . . . . . . . . . . . . . . . . 161 7.6.3 PortfolioDuration and Convexity. . . . . . . . . . . . . . . . . . . . . . . . 161 7.7 Immunization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.8 Full Immunization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Exercises and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8 The Term Structure of Interest Rates 177 8.1 Yield-to-Maturity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.2 Spot Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 2 1 Interest Rates and Factors Overview – interest is the payment made by a borrower (i.e. the cost of doing business) for using a lender’s capital assets (usually money); an example is a loan transaction – interest rate is the percentage of interest to the capital asset in question – interest takesintoaccountthe riskofdefault(riskthatthe borrowercan’tpaybacktheloan) – the risk ofdefaultcan be reduced ifthe borrower promises torelease anasset oftheirs inthe event of their default (the asset is called collateral) 1.1 Interest Interest on Savings Accounts – a bank borrows a depositor’s money and pays them interest for the use of their money – the greater the need for money, the greater the interest rate offered Interest Earned During the Period t to t+s: AVt+s−AVt – the Accumulated Value at time n is denoted as AVn – interest earned during a period of time is the difference between the Accumulated Value at the end of the period and the Accumulated Value at the beginning of the period The Effective Rate of Interest: i – i is the amount of interest earned over a one-year period when 1 is invested – i is also defined as the ratio of the amount of Interest Earned during the period to the Accumulated Value at the beginning of the period AVt+1−AVt i= AVt Interest on Loans – compensation a borrower of capital pays to a lender of capital – lender has to be compensated since they have temporarily lost use of their capital – interest and capital are almost always expressed in terms of money 2 1.2 Simple Interest – lettheinterest amountearnedeachyearonaninvestmentofX beconstantwheretheannual rate of interest is i: AVt =X(1+ti), where (1+ti) is a linear function – simple interest has the property that interest is NOT reinvested to earn additionalinterest – amount of Interest Earned to time t is I =AVt−AV0 =X(1+it)−X =X ·it 1.3 Compound Interest – lettheinterest amountearnedeachyearonaninvestmentofX alsoallowtheinterest earned to earn interest where the annual rate of interest is i: t AVt =X(1+i) , where (1+i)t is an exponential function – compound interest produces larger accumulations than simple interest when t>1 – note that a constant rate of compound interest implies a constant effective rate of interest 1.4 Accumulated Value Accumulated Value Factor: AVFt – assume that AVt is continuously increasing – let X be the initialPrincipal invested (X >0) where AV0 =X – AVt defines the Accumulated Value that amount X grows to in t years – the Accumulated Value at time t is the product of the initialcapital investment of X (Prin- cipal) made at time zero and the Accumulation Value Factor: AVt =X ·AVFt, where AVFt =(1+it) if simple interest is being applied and AVFt = (1+i)t if compound interest is being applied 3 1.5 Present Value Discounting – Accumulated Value is a future value pertaining to payment(s) made in the past – Discounted Value is a present value pertaining to payment(s) to be made in the future – discounting determines how much must be invested initially(Z) so that X will be accumu- lated after t years X Z·(1+i)t =X → Z = =X(1+i)−t (1+i)t – Z represents the present value of X to be paid in t years 1 – let v = , v is called a discount factor or present value factor 1+i Z =X ·vt Discount Function (Present Value Factor): PVFt 1 – simple interest: PVFt= 1+it 1 t – compound interest: PVFt = t =v (1+i) – compound interest produces smaller Discount Values than simple interest when t>1 4 1.6 Rate of Discount: d Definition – an effective rate of interest is taken as a percentage of the balance at the beginning of the year, while an effective rate of discount is at the end of the year. – eg. if 1 is invested and 6% interest is paid at the end of the year, then the Accumulated Value is 1.06 – eg. if 0.94 is invested after a 6% discount is paid at the beginning of the year, then the Accumulated Value at the end of the year is 1.00 – d is also defined as the ratio of the amount of interest (amount of discount) earned during the period to the amount invested at the end of the period AVt+1−AVt d= AVt+1 – if interest is constant, then discount is constant – the amount of discount earned from time t to t+s is AVt+s−AVt Relationships Between i and d – if 1 is borrowed and interest is paid at the beginning of the year, then 1−d remains – the accumulated value of 1−d at the end of the year is 1: (1−d)(1+i)=1 – interest rate is the ratio of the discount paid to the amount at the beginning of the period: d i= 1−d – discount rate is the ratio of the interest paid to the amount at the end of the period: i d= 1+i – the present value of end-of-year interest is the discount paid at the beginning of the year iv =d – the present value of 1 to be paid at the end of the year is the same as borrowing 1−d and repaying 1 at the end of the year (if both have the same value at the end of the year, then they have to have the same value at the beginning of the year) 1·v =1−d – thedifference between end-of-year,i,andbeginning-of-yearinterest, d,depends onthediffer- ence that isborrowed at the beginning ofthe year and the interest earned on that difference i−d=i[1−(1−d)]=i·d≥0 5 Discount Factors: PVFt and AVFt – under the simple discount model the Discount Present Value Factor is: PVFt=1−dt for 0≤t<1/d – under the simple discount model the Discount Accumulated Value Factor is: AVFt =(1−dt)−1 for 0≤t<1/d – under the compound discount model, the Discount Present Value Factor is: PVFt =(1−d)t =vt for t≥0 – under the compound discount model, the Discount Accumulated Value Factor is: AVFt =(1−d)−t for t≥0 – a constant rate of simple discount implies an increasing effective rate of discount – a constant rate of compound discount implies a constant effective rate of discount 6 1.7 Constant Force of Interest: δ Definitions – annual effective rate of interest is applied over a one-year period – a constant annual force of interest can be applied over the smallest sub-period imaginable (at a moment in time) and is denoted as δ – an instantaneous change at time t, due to interest rate δ, where the accumulated value at time t is X, can be defined as follows: d AVt dt δ = AVt d = ln(AVt) dt d t X(1+i) dt = X(1+i)t (1+i)t·ln(1+i) = (1+i)t δ =ln(1+i) – taking the exponential function of δ results in δ e =1+i – taking the inverse of the above formula results in 1 −δ e = =v 1+i – Accumulated Value Factor (AVFt) using constant force of interest is δt AVFt =e – Present Value Factor (PVFt) using constant force of interest is −δt PVFt=e 7 1.8 Varying Force of Interest – let the constant force of interest δ nowvaryat each infitesimalpoint intime andbe denoted as δt – a change from time t1 to t2, due to interest rate δt, where the accumulated value at time t1 is X, can be defined as follows: d AVt dt δt = AVt d = ln(AVt) dt (cid:2) (cid:2) t2 t2 d δt·dt= ln(AVt)·dt dt t1 t1 (cid:2) =(cid:3)ln(AVt(cid:4)2)−ln(AVt1) t2δt·dt=ln AVt2 (cid:2)t1 AVt1 t2 e t1 δt·dt =AVt2 AVt1 Varying Force of Interest Accumulation Factor - AVFt1,t2 – let (cid:2) t2 δt·dt AVFt1,t2 =e t1 represent anaccumulationfactorovertheperiodt1tot2,wheretheforceofinterestisvarying (cid:2) t δt·dt – if t1 =0, then the notation simplifies from AVF0,t2 to AVFt i.e. AVFt=e 0 – if δt is readily integrable, then AVFt1,t2 can be derived easily – if δt is not readily integrable, then approximate methods of integration are required Varying Force of Interest Present Value Factor - PVFt1,t2 – let (cid:2) t2 PVFt1,t2 = AVF1t1,t2 = (cid:2) t21δt·dt = AAVVtt12 =e− t1 δt·dt e t1 represent apresent valuefactorover theperiod t1 tot2,where the force ofinterest isvarying (cid:2) t − δt·dt – if t1 =0, then the notation simplifies from PVF0,t2 to PVFt i.e. PVFt =e 0 8
Description: