ebook img

Financial Mathematics: A Comprehensive Treatment in Continuous Time Volume II PDF

511 Pages·2022·8.007 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Financial Mathematics: A Comprehensive Treatment in Continuous Time Volume II

Financial Mathematics A Comprehensive Treatment in Continuous Time The book has been tested and refined through years of classroom teaching experience. With an abundance of examples, problems, and fully worked-out solutions, the text in- troduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. This textbook provides complete coverage of continuous-time financial models that form the cornerstones of financial derivative pricing theory. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related compre- hensive techniques for pricing different types of financial derivatives. Key features: • In-depth coverage of continuous-time theory and methodology. • Numerous, fully worked out examples and exercises in every chapter. • Mathematically rigorous and consistent yet bridging various basic and more ad- vanced concepts. • Judicious balance of financial theory and mathematical methods. • Guide to material. This revision contains: • Almost 150 pages worth of new material in all chapters. • An expanded set of solved problems and additional exercises. • Answers to all exercises. This book is a comprehensive, self-contained, and unified treatment of the main theory and application of mathematical methods behind modern-day financial mathematics. The text complements Financial Mathematics: A Comprehensive Treatment in Dis- crete Time, by the same authors, also published by CRC Press. Chapman & Hall/CRC Financial Mathematics Series Series Editors M.A.H. Dempster Rama Cont Centre for Financial Research Department of Mathematics Department of Pure Mathematics and Statistics Imperial College, UK University of Cambridge, UK Robert A. Jarrow Dilip B. Madan Lynch Professor of Investment Management Robert H. Smith School of Business Johnson Graduate School of Management University of Maryland, USA Cornell University, USA Recently Published Titles Stochastic Modelling of Big Data in Finance Anatoliy Swishchuk Introduction to Stochastic Finance with Market Examples, Second Edition Nicolas Privault Commodities: Fundamental Theory of Futures, Forwards, and Derivatives Pricing, Second Edition Edited by M.A.H. Dempster, Ke Tang Introducing Financial Mathematics: Theory, Binomial Models, and Applications Mladen Victor Wickerhauser Financial Mathematics: From Discrete to Continuous Time Kevin J. Hastings Financial Mathematics: A Comprehensive Treatment in Discrete Time Giuseppe Campolieti and Roman N. Makarov Introduction to Financial Derivatives with Python Elisa Alòs, Raúl Merino The Handbook of Price Impact Modeling Dr. Kevin Thomas Webster For more information about this series please visit: https://www.crcpress.com/Chapman-and-HallCRC- Financial-Mathematics-Series/book series/CHFINANCMTH Financial Mathematics A Comprehensive Treatment in Continuous Time Volume II Giuseppe Campolieti Roman N. Makarov First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2023 Giuseppe Campolieti and Roman N Makarov Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as- sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho- tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden- tification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Campolieti, Giuseppe (Mathematics professor), author. | Makarov, Roman N., author. Title: Financial mathematics Volume II : a comprehensive treatment in continuous time / Giuseppe Campolieti and Roman N. Makarov. Description: First Edition. | Boca Raton, FL : CRC Press, an imprint of Taylor and Francis, 2023. | Series: Textbooks in mathematics | Includes bibliographical references and index. Identifiers: LCCN 2022032096 (print) | LCCN 2022032097 (ebook) | ISBN 9781138603639 (hardback) | ISBN 9781032392592 (paperback) | ISBN 9780429468889 (ebook) Subjects: LCSH: Finance--Mathematical models. Classification: LCC HG106 .C35 2023 (print) | LCC HG106 (ebook) | DDC 332.01/5195--dc23/eng/20221104 LC record available at https://lccn.loc.gov/2022032096 LC ebook record available at https://lccn.loc.gov/2022032097 ISBN: 978-1-138-60363-9 (hbk) ISBN: 978-1-032-39259-2 (pbk) ISBN: 978-0-429-46888-9 (ebk) DOI: 10.1201/9780429468889 Typeset in CMR10 font by KnowledgeWorks Global Ltd. Publisher’s note: This book has been prepared from camera-ready copy provided by the authors. To our students and colleagues Taylor & Francis Taylor & Francis Group http://taylorandfrancis.com Contents List of Figures xi Preface xiii Authors xvii I Stochastic Calculus with Brownian Motion 1 1 One-Dimensional Brownian Motion and Related Processes 3 1.1 Multivariate Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Conditional Normal Distributions. . . . . . . . . . . . . . . . . . . . 4 1.2 Standard Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 One-Dimensional Symmetric Random Walk . . . . . . . . . . . . . . 5 1.2.2 Formal Definition and Basic Properties of Brownian Motion . . . . . 11 1.2.3 Multivariate Distribution of Brownian Motion. . . . . . . . . . . . . 14 1.2.4 The Markov Property and the Transition PDF . . . . . . . . . . . . 17 1.2.5 Quadratic Variation and Nondifferentiability of Paths . . . . . . . . 25 1.3 Some Processes Derived from Brownian Motion . . . . . . . . . . . . . . . 28 1.3.1 Drifted Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . 28 1.3.2 Geometric Brownian Motion . . . . . . . . . . . . . . . . . . . . . . 29 1.3.3 Processes related by a monotonic mapping . . . . . . . . . . . . . . 31 1.3.4 Brownian Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.3.5 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.4 First Hitting Times and Maximum and Minimum of Brownian Motion . . 37 1.4.1 The Reflection Principle: Standard Brownian Motion . . . . . . . . . 37 1.4.2 Translated and Scaled Driftless Brownian Motion . . . . . . . . . . . 45 1.4.3 Brownian Motion with Drift. . . . . . . . . . . . . . . . . . . . . . . 47 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2 Introduction to Continuous-Time Stochastic Calculus 59 2.1 The Riemann Integral of Brownian Motion . . . . . . . . . . . . . . . . . . 59 2.1.1 The Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.1.2 The Integral of a Brownian Path . . . . . . . . . . . . . . . . . . . . 59 2.2 The Riemann–Stieltjes Integral of Brownian Motion . . . . . . . . . . . . . 62 2.2.1 The Riemann–Stieltjes Integral . . . . . . . . . . . . . . . . . . . . . 62 2.2.2 Integrals w.r.t. Brownian Motion: Preliminary Discussion . . . . . . 64 2.3 The Itˆo Integral and Its Basic Properties . . . . . . . . . . . . . . . . . . . 66 2.3.1 The Itˆo Integral for Simple Processes. . . . . . . . . . . . . . . . . . 66 2.3.2 The Itˆo Integral for General Processes . . . . . . . . . . . . . . . . . 74 2.4 Itˆo Processes and Their Properties . . . . . . . . . . . . . . . . . . . . . . . 83 2.4.1 Gaussian Processes Generated by Itˆo Integrals . . . . . . . . . . . . 83 vii viii Contents 2.4.2 Itˆo Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.4.3 Quadratic and Co-Variation of Itˆo Processes . . . . . . . . . . . . . 86 2.5 Itˆo’s Formula for Functions of BM and Itˆo Processes . . . . . . . . . . . . . 90 2.5.1 Itˆo’s Formula for Functions of BM . . . . . . . . . . . . . . . . . . . 90 2.5.2 An “Antiderivative” Formula for Evaluating Itˆo Integrals . . . . . . 93 2.5.3 Itˆo’s Formula for Itˆo Processes . . . . . . . . . . . . . . . . . . . . . 95 2.6 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 98 2.6.1 Solutions to Linear SDEs . . . . . . . . . . . . . . . . . . . . . . . . 99 2.6.2 Existence and Uniqueness of a Strong Solution to an SDE . . . . . . 106 2.7 TheMarkovProperty,Martingales,Feynman–KacFormulae,andTransition CDFs and PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2.7.1 Forward Kolmogorov PDE . . . . . . . . . . . . . . . . . . . . . . . 121 2.7.2 Transition CDF/PDF for Time-Homogeneous Diffusions . . . . . . . 123 2.8 Radon–Nikodym Derivative Process and Girsanov’s Theorem . . . . . . . . 124 2.8.1 Some Applications of Girsanov’s Theorem . . . . . . . . . . . . . . . 130 2.9 Brownian Martingale Representation Theorem . . . . . . . . . . . . . . . . 134 2.10 Stochastic Calculus for Multidimensional BM . . . . . . . . . . . . . . . . . 135 2.10.1 The Itˆo Integral and Itˆo’s Formula for Multiple Processes on Multidimensional BM . . . . . . . . . . . . . . . . . . . . . . . . . . 135 2.10.2 Multidimensional SDEs, Feynman–Kac Formulae, and Transition CDFs and PDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2.10.3 Girsanov’s Theorem for Multidimensional BM. . . . . . . . . . . . . 157 2.10.4 Martingale Representation Theorem for Multidimensional BM . . . 160 2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 II Continuous-Time Modelling 169 3 Risk-Neutral Pricing in the (B,S) Economy: One Underlying Stock 171 3.1 From the CRR Model to the BSM Model . . . . . . . . . . . . . . . . . . . 172 3.1.1 Portfolio Strategies in the Binomial Tree Model . . . . . . . . . . . . 174 3.1.2 The Cox–Ross–Rubinstein Model and its Continuous-Time Limit . . 177 3.2 Replication (Hedging) and Derivative Pricing in the Simplest Black–Scholes Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 3.2.1 Pricing Standard European Calls and Puts . . . . . . . . . . . . . . 187 3.2.2 Hedging Standard European Calls and Puts . . . . . . . . . . . . . . 190 3.2.3 Europeans with Piecewise Linear Payoffs . . . . . . . . . . . . . . . 196 3.2.4 Power Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 3.2.5 Dividend Paying Stock . . . . . . . . . . . . . . . . . . . . . . . . . . 204 3.2.6 Option Pricing with the Stock Num´eraire . . . . . . . . . . . . . . . 211 3.3 Forward Starting, Chooser, and Compound Options . . . . . . . . . . . . . 216 3.4 Some European-Style Path-Dependent Derivatives . . . . . . . . . . . . . . 225 3.4.1 Risk-Neutral Pricing under GBM . . . . . . . . . . . . . . . . . . . . 228 3.4.2 Pricing Single Barrier Options . . . . . . . . . . . . . . . . . . . . . 232 3.4.3 Pricing Lookback Options . . . . . . . . . . . . . . . . . . . . . . . . 238 3.5 Structural Credit Risk Models . . . . . . . . . . . . . . . . . . . . . . . . . 245 3.5.1 The Merton Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 3.5.2 The Black–Cox Model . . . . . . . . . . . . . . . . . . . . . . . . . . 247 3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Contents ix 4 Risk-Neutral Pricing in a Multi-Asset Economy 261 4.1 General Multi-Asset Market Model: Replication and Risk-Neutral Pricing . 262 4.2 EquivalentMartingaleMeasures:DerivativePricingwithGeneralNum´eraire Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 4.3 Black–Scholes PDE and Delta Hedging for Standard Multi-Asset Derivatives 274 4.3.1 Standard European Option Pricing for Multi-Stock GBM . . . . . . 277 4.3.2 Explicit Pricing Formulae for the GBM Model . . . . . . . . . . . . 280 4.3.3 Cross-Currency Option Valuation . . . . . . . . . . . . . . . . . . . 289 4.3.4 Option Valuation with General Num´eraire Assets . . . . . . . . . . . 295 4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 5 American Options 307 5.1 Basic Properties of Early-Exercise Options . . . . . . . . . . . . . . . . . . 307 5.2 Arbitrage-Free Pricing of American Options . . . . . . . . . . . . . . . . . 311 5.2.1 Optimal Stopping Formulation and Early-Exercise Boundary . . . . 311 5.2.2 The Smooth Pasting Condition . . . . . . . . . . . . . . . . . . . . . 314 5.2.3 Put-Call Symmetry Relation . . . . . . . . . . . . . . . . . . . . . . 316 5.2.4 Dynamic Programming Approach for Bermudan Options . . . . . . 317 5.3 Perpetual American Options . . . . . . . . . . . . . . . . . . . . . . . . . . 318 5.3.1 Pricing a Perpetual Put Option . . . . . . . . . . . . . . . . . . . . . 319 5.3.2 Pricing a Perpetual Call Option . . . . . . . . . . . . . . . . . . . . 321 5.4 Finite-Expiration American Options . . . . . . . . . . . . . . . . . . . . . . 322 5.4.1 The PDE Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 322 5.4.2 The Integral Equation Formulation . . . . . . . . . . . . . . . . . . . 325 5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 6 Interest-Rate Modelling and Derivative Pricing 331 6.1 Basic Fixed Income Instruments . . . . . . . . . . . . . . . . . . . . . . . . 331 6.1.1 Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 6.1.2 Forward Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 6.1.3 Arbitrage-Free Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . 333 6.1.4 Fixed Income Derivatives . . . . . . . . . . . . . . . . . . . . . . . . 334 6.2 Single-Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 6.2.1 Diffusion Models for the Short Rate Process . . . . . . . . . . . . . . 337 6.2.2 PDE for the Zero-Coupon Bond Value . . . . . . . . . . . . . . . . . 338 6.2.3 Affine Term Structure Models . . . . . . . . . . . . . . . . . . . . . . 340 6.2.4 The Ho–Lee Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 6.2.5 The Vasiˇcek Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342 6.2.6 The Cox–Ingersoll–Ross Model . . . . . . . . . . . . . . . . . . . . . 344 6.3 Heath–Jarrow–Morton Formulation . . . . . . . . . . . . . . . . . . . . . . 346 6.3.1 HJM under Risk-Neutral Measure . . . . . . . . . . . . . . . . . . . 347 6.3.2 Relationship between HJM and Affine Yield Models . . . . . . . . . 350 6.4 Multifactor Affine Term Structure Models . . . . . . . . . . . . . . . . . . . 353 6.4.1 Gaussian Multifactor Models . . . . . . . . . . . . . . . . . . . . . . 354 6.4.2 Equivalent Classes of Affine Models . . . . . . . . . . . . . . . . . . 355 6.5 Pricing Derivatives under Forward Measures . . . . . . . . . . . . . . . . . 356 6.5.1 Forward Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 6.5.2 Pricing Stock Options under Stochastic Interest Rates . . . . . . . . 358 6.5.3 Pricing Options on Zero-Coupon Bonds . . . . . . . . . . . . . . . . 360 6.6 LIBOR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 6.6.1 LIBOR Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.