FINANCIAL ENGINEERING AND COMPUTATION Duringthepastdecademanysophisticatedmathematicaland computationaltechniqueshavebeendevelopedforanalyzing financialmarkets.Studentsandprofessionalsintendingtoworkin anyareaoffinancemustnotonlymasteradvancedconceptsand mathematicalmodelsbutmustalsolearnhowtoimplementthese modelscomputationally.Thiscomprehensivetextcombinesa thoroughtreatmentofthetheoryandmathematicsbehind financialengineeringwithanemphasisoncomputation,in keepingwiththewayfinancialengineeringispracticedintoday’s capitalmarkets. Unlikemostbooksoninvestments,financialengineering,or derivativesecurities,thebookstartsfrombasicideasinfinance andgraduallybuildsupthetheory.Theadvancedmathematical conceptsneededinmodernfinanceareexplainedataccessible levels.Thusitoffersathoroughgroundinginthesubjectfor MBAsinfinance,studentsofengineeringandscienceswhoare pursuingacareerinfinance,researchersincomputationalfinance, systemanalysts,andfinancialengineers. Buildingonthetheory,theauthorpresentsalgorithmsfor computationaltechniquesinpricing,riskmanagement,and portfoliomanagement,togetherwithanalysesoftheirefficiency. Pricingfinancialandderivativesecuritiesisacentralthemeofthe book.Abroadrangeofinstrumentsistreated:bonds,options, futures,forwards,interestratederivatives,mortgage-backed securities,bondswithembeddedoptions,andmore.Each instrumentistreatedinashort,self-containedchapterforready referenceuse. ManyofthesealgorithmsarecodedinJavaasprogramsfor theWeb,availablefromthebook’shomepage: www.csie.ntu.edu.tw/∼lyuu/Capitals/capitals.htm.These programscanbeexecutedonWindows,MacOS,orUnix platforms. Yuh-DauhLyuureceivedhisPh.D.incomputersciencefrom HarvardUniversity.HispastpositionsincludeMemberof TechnicalStaffatBellLabs,ResearchScientistatNECResearch Institute(Princeton),andAssistantVicePresidentatCiticorp Securities(NewYork).HeiscurrentlyProfessorofComputer ScienceandInformationEngineeringandProfessorofFinance, NationalTaiwanUniversity.HispreviousbookisInformation DispersalandParallelComputation. ProfessorLyuuhaspublishedworksinbothcomputer scienceandfinance.HealsoholdsaU.S.patent.ProfessorLyuu receivedseveralawardsforsupervisingoutstandinggraduate students’theses. i FINANCIAL ENGINEERING AND COMPUTATION Principles, Mathematics, Algorithms YUH-DAUH LYUU NationalTaiwanUniversity iii The Pitt Building, Trumpington Street, Cambridge, United Kingdom The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org ©Yuh-Dauh Lyuu 2004 First published in printed format 2002 ISBN 0-511-04094-6 eBook (netLibrary) ISBN 0-521-78171-X hardback InLovingMemoryof RACHELand JOSHUA v Contents Preface pagexiii UsefulAbbreviations xvii 1 Introduction 1 1.1 ModernFinance:ABriefHistory 1 1.2 FinancialEngineeringandComputation 1 1.3 FinancialMarkets 2 1.4 ComputerTechnology 4 2 AnalysisofAlgorithms 7 2.1 Complexity 7 2.2 AnalysisofAlgorithms 8 2.3 DescriptionofAlgorithms 9 2.4 SoftwareImplementation 10 3 BasicFinancialMathematics 11 3.1 TimeValueofMoney 11 3.2 Annuities 14 3.3 Amortization 15 3.4 Yields 17 3.5 Bonds 24 4 BondPriceVolatility 32 4.1 PriceVolatility 32 4.2 Duration 34 4.3 Convexity 41 5 TermStructureofInterestRates 45 5.1 Introduction 45 5.2 SpotRates 46 5.3 ExtractingSpotRatesfromYieldCurves 47 5.4 StaticSpread 49 5.5 SpotRateCurveandYieldCurve 50 5.6 ForwardRates 50 5.7 TermStructureTheories 56 5.8 DurationandImmunizationRevisited 60 vii viii Contents 6 FundamentalStatisticalConcepts 64 6.1 Basics 64 6.2 Regression 69 6.3 Correlation 71 6.4 ParameterEstimation 72 7 OptionBasics 75 7.1 Introduction 75 7.2 Basics 76 7.3 Exchange-TradedOptions 77 7.4 BasicOptionStrategies 78 8 ArbitrageinOptionPricing 84 8.1 TheArbitrageArgument 84 8.2 RelativeOptionPrices 85 8.3 Put–CallParityandItsConsequences 86 8.4 EarlyExerciseofAmericanOptions 88 8.5 ConvexityofOptionPrices 89 8.6 TheOptionPortfolioProperty 90 9 OptionPricingModels 92 9.1 Introduction 92 9.2 TheBinomialOptionPricingModel 93 9.3 TheBlack–ScholesFormula 104 9.4 UsingtheBlack–ScholesFormula 111 9.5 AmericanPutsonaNon-Dividend-Paying Stock 113 9.6 OptionsonaStockthatPaysDividends 114 9.7 TraversingtheTreeDiagonally 118 10 SensitivityAnalysisofOptions 123 10.1 SensitivityMeasures(“TheGreeks”) 123 10.2 NumericalTechniques 127 11 ExtensionsofOptionsTheory 131 11.1 CorporateSecurities 131 11.2 BarrierOptions 137 11.3 InterestRateCapsandFloors 140 11.4 StockIndexOptions 141 11.5 ForeignExchangeOptions 143 11.6 CompoundOptions 147 11.7 Path-DependentDerivatives 148 12 Forwards,Futures,FuturesOptions,Swaps 155 12.1 Introduction 155 12.2 ForwardContracts 156 12.3 FuturesContracts 161 12.4 FuturesOptionsandForwardOptions 168 12.5 Swaps 173 Contents ix 13 StochasticProcessesandBrownianMotion 177 13.1 StochasticProcesses 177 13.2 Martingales(“FairGames”) 179 13.3 BrownianMotion 183 13.4 BrownianBridge 188 14 Continuous-TimeFinancialMathematics 190 14.1 StochasticIntegrals 190 14.2 ItoProcesses 193 14.3 Applications 197 14.4 FinancialApplications 201 15 Continuous-TimeDerivativesPricing 206 15.1 PartialDifferentialEquations 206 15.2 TheBlack–ScholesDifferentialEquation 207 15.3 Applications 211 15.4 GeneralDerivativesPricing 220 15.5 StochasticVolatility 221 16 Hedging 224 16.1 Introduction 224 16.2 HedgingandFutures 224 16.3 HedgingandOptions 228 17 Trees 234 17.1 PricingBarrierOptionswith CombinatorialMethods 234 17.2 TrinomialTreeAlgorithms 242 17.3 PricingMultivariateContingentClaims 245 18 NumericalMethods 249 18.1 Finite-DifferenceMethods 249 18.2 MonteCarloSimulation 255 18.3 Quasi–MonteCarloMethods 262 19 MatrixComputation 268 19.1 FundamentalDefinitionsandResults 268 19.2 Least-SquaresProblems 273 19.3 CurveFittingwithSplines 278 20 TimeSeriesAnalysis 284 20.1 Introduction 284 20.2 ConditionalVarianceModelsforPriceVolatility 291 21 InterestRateDerivativeSecurities 295 21.1 InterestRateFuturesandForwards 295 21.2 Fixed-IncomeOptionsandInterestRateOptions 306 21.3 OptionsonInterestRateFutures 310 21.4 InterestRateSwaps 312
Description: