ebook img

Fig 1 PDF

19 Pages·2016·2.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fig 1

RESEARCHARTICLE Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses AntoniettaStango1,KamyaYekehYazdandoost2,FrancescoNegro3,DarioFarina1* 1 InstituteofNeurorehabilitationSystems,BernsteinFocusNeurotechnologyGoettingen,BernsteinCenter forComputationalNeuroscience,UniversityMedicalCenterGoettingen,Georg-AugustUniversity,37075, Goettingen,Germany,2 CentreforWirelessCommunications,DepartmentofCommunications Engineering,UniversityofOulu,P.O.Box4500,90014,Oulu,Finland,3 DepartmentofClinicaland ExperimentalSciences,UniversityofBrescia,25123,Brescia,Italy *[email protected] a11111 Abstract Wirelessimplanteddevicescanbeusedtointerfacepatientswithdisabilitieswiththeaim ofrestoringimpairedmotorfunctions.Implanteddevicesthatrecordandtransmitelectro- OPENACCESS myographic(EMG)signalshavebeenappliedforthecontrolofactiveprostheses.Thissim- Citation:StangoA,YazdandoostKY,NegroF, ulationstudyinvestigatesthepropagationlossesandtheabsorptionrateofawirelessradio FarinaD(2016)CharacterizationofIn-BodytoOn- frequencylinkforin-to-onbodycommunicationinthemedicalimplantcommunicationser- BodyWirelessRadioFrequencyLinkforUpper vice(MICS)frequencybandtocontrolmyoelectricupperlimbprostheses.Theimplanted LimbProstheses.PLoSONE11(10):e0164987. antennaisselectedandasuitableexternalantennaisdesigned.Thecharacterizationof doi:10.1371/journal.pone.0164987 bothantennasisdonebynumericalsimulations.Aheterogeneous3Dbodymodelanda Editor:DingguoZhang,ShanghaiJiaoTong 3Delectromagneticsolverhavebeenusedtomodelthepathlossandtocharacterizethe University,CHINA specificabsorptionrate(SAR).ThepathlossparameterswereextractedandtheSARwas Received:February1,2016 characterized,verifyingthecompliancewiththeguidelinelimits.Thepathlossmodelhas Accepted:October4,2016 beenalsousedforapreliminarylinkbudgetanalysistodeterminethefeasibilityofsuch Published:October20,2016 systemcompliantwiththeIEEE802.15.6standard.Theresultinglinkmarginof11dBcon- Copyright:©2016Stangoetal.Thisisanopen firmsthefeasibilityofthesystemproposed. accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevant Introduction parametersandsimulationresultswillbeavailable athttps://dx.doi.org/10.6084/m9.figshare. Inthelastdecade,therehasbeenanincreasingneedofacquiringbiometricsignalsformoni- 3408223.v1. toringvitalsignsandsupportingchronicallyillpatients.Inparticular,implanteddevicescan beusedtomonitoranddiagnosecardiacpathologies,cancer,asthmaandneurologicaldisor- Funding:ThisworkwassupportedbytheGerman MinistryforEducationandResearch(BMBF)via ders[1].Morerecentapplicationsofwirelessimplantedsystemsfocusalsoonhelpingpeople theBernsteinFocusNeurotechnology(BFNT) withphysicaldisabilities[2],e.g.cochlearandretinaimplants,oractivelimbprostheses[3]. Go¨ttingenundergrantnumber1GQ0810. Thisstudyinvestigatesthepossibilitytouseimplanteddevicesabletorecordandtransmit CompetingInterests:Theauthorshavedeclared electromyogram(EMG)signalsinordertoallowamputeestocontrolactivemyoelectric thatnocompetinginterestsexist. prostheses. PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 1/19 In-BodyRFWirelessLink TheactiveprosthesescurrentlyavailableinthemarkethavemultipleDegreesofFreedom (DoFs)andareusuallydrivenbysurfaceEMGsignals.SurfaceEMGcanbeeasilydetected non-invasivelywitharelativelylargepickuparea[4].However,duetothedonning/doffingof theprosthesis,thesurfaceEMGelectrodesinthesocketmaychangepositionwithrespectto theunderlyingmusclescompromisingthereliabilityofthesystem.Moreover,surfaceEMG canonlyberecordedfromsuperficialmusclesandtheycanbepronetochangesinskinimped- anceandbreakageofthewires[5].Intramuscularelectrodesmaylimittheseproblemswhen coupledwithwirelesstransmission.Therefore,recently,theuseofimplanteddeviceswhich canwirelesslytransmittheEMGsignalstoacontrollerembeddedinthesocketoftheprosthe- sishasbeenproposed[5,6].ImplantedEMGsensorscanprovideinformationfromdeepmus- clesthatarenoteasilyaccessiblewithstandardsurfaceEMGelectrodes,andthereforeitcan helptoimprovethecontroloftheprosthesis. In[6]theauthorsproposeasystemwithtwoimplantedelectrodes,whichuseatransmission protocoltailoredforrecordingphysiologicalsignals.TheRFlinkisbasedonIEEE802.15.4[7] inthe2.4GHzfrequencyband,whilethepowertransferisdonebyaninductivelink.Inthe mostdetailedstudyinthisfield[5],theauthorspresentamultichannelsystemthatcanreceive andprocesssignalsfromEMGimplantedsensors.Thesystemalsocomprisesalargeexternal powercoil,placedaroundthelimb,areceivingantenna,andatelemetrydevicewhichpasses thedatatotheprosthesiscontroller.Thissystemhasbeenrecentlyimplantedinapatient[8] andimproved[9],butithassomelimitations:thelargeinductivepowerfieldlowersitsoverall efficiencyandthereisnoflexibilityinthelocationoftheimplantssincetheymustbewithin theinductiveareaandparalleltotheexternalcoil.Furthermorethepresenceofacircularcoil limitstheuseofsuchsystemtoamputeeswitharoundstump[10]. Theradiocommunicationbetweenimplantedbiosensorandexternalbiomedicalsystems hasspecificissuesduetothefactthatthehumanbodyisaheterogeneouspropagationenviron- ment.Thehumanbodyischaracterizedbymultiplelayersoftissueswithdifferentthicknesses anddielectricproperties.Furthermore,everyapplicationdemandsdeviceswithappropriate shapesandrequirements,dependingontheplacewheretheyhavetobeimplantedandonthe tissuesinvolvedinthetransmission[11].Theantennashapeanddimensionsdependonthe applicationandonthebandofoperation[11].ThebandassignedbytheFederalCommunica- tionCommission(FCC)andacceptedinmostCountriesforimplantedcommunicationis 402–405MHz[12,13].Thisbandiscalledmedicalimplantcommunicationservice(MICS).It allowslowpowertransmission(outputpowermaximum25μWEIRP)satisfyingantennaper- formancecompatiblewiththehumanbody,assuringnointerferencewithotherradiooperat- inginthesamefrequencyband.Forthesereasons,industriesareveryinterestedtodevelop implanteddevicesoperatinginthisband[14].CompaniessuchasMedtronic,Biotronicand St.Jude,havealreadymadecommerciallyavailabledevicesworkinginthisband[14].The MICSbandhasalsobeenadoptedbythestandardIEEE802.15.6[15]forimplantedapplica- tions.ThestandardIEEE802.15.6supportsmedicalcommunicationbetweennon-invasive devicesplacedonthebodyandimplanteddevicesplacedinthebody,aswellasexternaldevices thatarearoundthebody.However,thisstandarddoesnotprovideinformationontheabsolute performanceofthechannelmodels.Aspecifictaskgrouprecommendeddifferentchannel models,basedonsevenrepresentativescenarios[16],threeofthemrelatedtoimplantedappli- cations.However,in[16]ithasbeenstatedthatthechannelmodelsdescribedinthedocument arenotintendedtoprovideinformationofabsoluteperformanceandthateachapplicationcan havespecificrequirements. ThereareonlyfewstudiesonimplantedapplicationswithintheMICSband,sinceoftenthe ISM(IndustrialScientificandMedical)bandwasusedinstead.Infact,thedesignofanantenna whichoperatesintheMICSbandischallenging,mainlyduetolimitationsinthedimensions. PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 2/19 In-BodyRFWirelessLink IntheMICSbandthewavelengthinsidethehumanbodyis~9cm,whileintheairis~74cm. Nevertheless,theISMbandisusedforalmostallthedevicesthatweuseineverydaylife,such asradio-frequencyidentifications(RFID),BluetoothandZigBee,thereforetheriskofinterfer- enceisveryhigh.OnthecontrarytheMICSbandhasbeenreservedforhumanimplantable devices,sharingthefrequencyonlywithweatherballoons(400–406MHz).In[17,18]artificial cardiacpacemakerswithimplantedantennasoperatingintheMICSbandareconsidered.In bothstudiestheperformanceoftheantennashasbeenanalyzedbysimulationswithsimplified phantoms.In[18]anexperimentonporcinetissueispresentedwhereitwasobservedthatthe performancewasdifferentwithrespecttothesimulatedmodelbecauseofthethickfatlayer andtheabsenceofbonesinthepigtissues.Additionalstudieshavebeenconductedoningested implants,suchasacapsuleendoscope[19,20],anddemonstratedthattheMICSbandisideal forwirelessimplant[17].In[20]thepathlossmodelandtheSARlevelhavebeeninvestigated foraspiralantennainMICSfrequencieswithnumericalsimulationsina3Dhumanmodel.It hasbeendemonstratedthatforanendoscopycapsulethepathlossexponentcanvarydepend- ingonthesubject(adultorchild)andonthedeepnessinthebody,i.e.,onthelayersoftissues betweenthetransmittingandthereceivingantenna.Therefore,itisnotpossibletoprovidea singlepathlossmodelforwirelesscommunicationforin-bodytoon-bodyandeachapplica- tionneedstobespecificallyinvestigated.InthecaseofwirelessimplantsforrecordingEMG signalstodrivehandprostheses,therearenostudiesonpathloss,exceptourpreliminary report[21]. Inthepresentwork,weproposeasystembasedontheIEEE802.15.6standard[15]com- posedbytwoimplanteddevicesthatrecordandtransmitwirelessEMGsignalstoanon-body devicepositionedinsidethesocketofahandprosthesis.Thesystemcanbeusedforeachtype ofamputee,includingsubjectwithtargetmusclereinnervation(TMR),sincetherearenocon- straintsfortheplacementoftheimplants.Moreoveritusesafrequencybanddedicatedto implanteddevices. ThepathlossmodelhasbeeninvestigatedbyFDTD(FiniteDifferenceTimeDomain)sim- ulations,witha3Dhumanbodymodelforthesystemproposed.Furthermore,theSARvalues areinvestigatedtodemonstratethatthesystemisnotexceedingthelimitationsimposedby regulations,andconsequentlyisnotharmfultohumans.Finally,apreliminaryevaluationof thelinkbudgethasbeendonetakingintoaccounttheresultsobtained. MaterialsandMethods Theproposedsystem(Fig1)consistsoftwoEMGsensorsimplantedintheforearmofan amputeeandanexternaldevicethatcontrolstheprosthesis.Theimplantedsensorsrecordand processtheEMGsignals,whicharewirelesslytransmittedtoanexternalantenna,placedon thesocketprosthesis.Theprocessedsignalsarethenusedtodrivethehandprosthesis.The communicationlinkbetweenthedevicesfollowsthestandardforWirelessBodyAreaNetwork (WBAN)[15]. HumanModelandElectromagneticSimulationTool Thedesignofwirelessimplantcommunicationsystemsrequiresknowledgeonthemultiple layersoftissuesofthehumanbodyandtherespectivedielectricproperties.Propagationlosses andSARmeasurementsofimplanteddevicescannotbeinvestigatedwithin-vivoexperiments. Forthisreason,numericalsimulationsandflatphantomsfilledwithmuscletissuesimulating fluidarecommonlyused.Phantomsarenon-standardizedyetandtheyrepresentasimplified versionofthehumanbody[3]andnotalltheinterfacesbetweenthetissuelayerscanbe PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 3/19 In-BodyRFWirelessLink Fig1.Systemoverview. doi:10.1371/journal.pone.0164987.g001 PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 4/19 In-BodyRFWirelessLink represented.Moreovermimickingthelimbsitismorechallengingthanotherpartsofthe humanbody[14].Forthesereasonsinthisstudyanumericalsimulationhasbeenpreferred. TheEMnumericalevaluationshavebeencarriedoutbyFDTDsimulationswiththe3D solverSEMCAD-X[22]andwitha3Dhumanbodymodel.Thehumanbodymodelhasbeen obtainedfrommagneticresonanceimages(MRI)ofhealthyvolunteersandisprovidedby SPEAG[23].Themodelrepresentsamanof34yearsold(denotedDuke)anditispartofthe VirtualFamily,whichhasfouranatomicalmodels(twoadultsandtwochildren).Thesemodels include80bodytissueswithdielectricpropertiesbasedonthedatabasegeneratedbyGabriel [24].Themaximumgridstepofthehumanmodelis2mm. ImplantedAntennas TheimplantedantennaselectedinthisworkisthesameusedbytheIEEE802.15.TG6commit- teetodefinethechannelmodelsforthestandardIEEE802.15.6andisextensivelydescribedin [16,25],and[26].Thedimensionsandshapeofthisantennafitwellinadeviceimplanted insideaphantomlimbofatransradialamputee.Theantennaiscomposedofasinglemetallic layerofcopper.ThemetalliclayerisprintedonasideofaD51(NTK)substratewithdielectric constantε =30,losstangenttanθ=3.8e-05,thicknessof1mm,andcoveredbyRH-5sub- r stratewithdielectricconstantε =1.0006,losstangenttanθ=0andthicknessof1mm(Fig r 2a).TheantennahasbeendesignedtooperateinthehumanbodywithintheMICSfrequency band(402–405MHz)[25].Twoantennashavebeenimplantedintheleftarmofthehuman model,approximatelyinthewristextensorandflexormuscles.Fig2bshowstheimplanted antennasinsidethearmofDuke.AsectionofthearmwiththeimplantisdepictedinFig2c. To verifythattheoperatingfrequencyinthehumanbodyisintherangeofMICSband,the reflectioncoefficient(S )oftheantennahasbeensimulated.Thereturnlosshasbeencalcu- 11 latedafterpositioningtheantennainsidethehumanbodyfixingthecentralfrequencyto403.5 MHz,withtheFDTDsimulationplatformSEMCADX[22].TheS valuewasabout-10dBat 11 403.5MHzasshowninFig3,whichconfirmsagoodimpedancematch.Fig4ashowsa3D polarplotofthegainoftheimplantedantenna.Thegainisnotisotropicbutvarieswiththe direction.Themaximumgain,takingintoaccountalsothelossesofthebodyphantom,is -55.37dBi.Fig4bshowsthesimulatedradiationpatternnormalizedto1V/m.Theradiation patternhasbeencomputedtakingintoaccounttheimpactofthehumanbody,asrecom- mendedby[27].Theoriginofthecoordinatesystemisplacedontheborderoftheimplanted Fig2.MICSimplantedantennaandantennapositioning.a)frontviewoftheimplantedantenna;b)humanmodelwiththeimplantedantennasinthe redsquaresandtheexternaldipole;c)crosssectionofthearmwiththeimplantedantennas. doi:10.1371/journal.pone.0164987.g002 PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 5/19 In-BodyRFWirelessLink Fig3.ReturnLossoftheimplantedantenna.S isabout-10dBat403.5MHz. 11 doi:10.1371/journal.pone.0164987.g003 antenna.Themaximumdirectivityisobservedinthedirectionoppositetothexaxis(intheXZ plane),butitispossibletoobserve(Fig4c)thattheE andE componentsaresimilar. θ ϕ On-bodyAntenna Asafirststep,tosimplifytheanalysisandreducethesimulationtime,ahalf-wavedipole antennahasbeenselectedasareceivingantenna.Amorerealisticantennahasalsobeeninves- tigatedasarefinementstep(seebelow).Thehalf-wavedipolehasbeenmodeledandtunedto operateat403.5MHz.Consideringthatthewavelengthinfreespaceat403.5MHzis~74cm, thelengthofeacharmofthehalf-wavedipolehasbeensetto180mm,withthicknessof2mm andagapbetweenthearmsof1mm.Fig2bshowsthelocationoftheexternalantenna,close tothehumanbody.Thereturnlossofthedipolehasbeensimulatedinfreespace(withoutthe presenceofthehumanmodel)andat1cmfromthearmsurfaceofthehumanmodel(Fig2b), inthenearfieldregion[28].Fig5reporttheS11inbothconditions.Thegraphsaresimilarand showagoodimpedancematchintheMICSbandfrequency(S11at403.5MHzis~-10dBin freespaceand~-12dBnearthehumanmodel). Thegainandtheradiationpatternhavebeencomputedfortheexternalantennainthe samewayandwiththesamecoordinatesystemastheimplantedantenna.The3Dpolarplotof thegainisshowninFig6aandthemaximumvalueis-3.20dBi.Theradiationpatternnormal- izedto1V/misdescribedintheFig6band6c.Ithasbeencomputedtakingintoaccountthe presenceofthehumanbodymodel.Indeed,Fig6cshowsthattheE andE componentshave φ θ smallervaluesinthedirectionsofthehumanbody. PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 6/19 In-BodyRFWirelessLink Fig4.3DGainpolarandradiationpatternplotsoftheimplantedantenna.a)3Dgainpolarplot,maximumgainequalto-55.37dBi;b)3D normalizedradiationpatternpolarplot;c)valuesofE (dB)andE (dB)inthreedifferentplanes.Thecoordinatesystemisshowninfigure.Maximum φ θ value-41.04dB. doi:10.1371/journal.pone.0164987.g004 Ahalf-wavedipoleasdescribedbeforeisveryusefultoanalyzetheelectromagneticcharac- teristicsofthecommunicationsystembetweentheimplantsandtheexternalcontrollerofthe prosthetichand.However,consideringitslength,suchantennaisnotagoodcandidatetobe embeddedinthesocketofahandprosthesis.Forthispurpose,ahelicaldipoleantenna[29] (Fig7)withconstantradiusandfeedatthemidpointhasbeendesigned.Thehelicalantenna hasbeenoptimizedwiththeFDTDsimulatorSEMCAD[22]tooperateintheMICSfre- quencybandwhenpositionednearthehumanbody.Theconductorwirehasaradiusof 1.433mm,thedistancebetweentheturnhasbeenfixedto180mm,andthetotalheightof theantennais152.4mm(Fig7a).Thediameterofthehelicalis101mm,andthearmofthe humanmodelhasapproximatelyadiameterof80mm(wheretheimplantsispositioned). TheantennacanbepositionedaroundthearmasdepictedinFig7b.Thereturnloss(Fig8) hasbeensimulatedinfreespaceandnearthe3Dhumanbody(asinFig7b).FromFig8,itis possibletonoticethatthereisade-tuningoftheantennawhenpositionedinfreespace.The PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 7/19 In-BodyRFWirelessLink Fig5.ReturnLossofthedipoleantenna.S is~-12dBat403.5MHznearthehumanbody. 11 doi:10.1371/journal.pone.0164987.g005 S valueat403.5MHzis-11dBwhentheantennaisaroundthearmofthehumanbody 11 (orangecurve),whileS is~-3dBinfreespaceat403.5MHz(bluecurve).Thisshapeallows 11 theantennatobeembeddedintothesocketofahandprosthesis,withgainandradiationpat- tern(Fig9)similartothehalf-wavedipole. Channelmodelingforbodyimplanteddevices ThecharacteristicsofaRFsignalchangeduringtransmissionbetweentransmittingandreceiv- ingantennas.Thechangesdependontheenvironmentandthedistancebetweenthetransmit- terandthereceiver.Inthecasestudyofthiswork,themediumisthehumanbody,whichisa lossyheterogeneousmediumwithhighpermittivity.In-bodyEMGsensorscontrollingapros- thetichandshouldrelyonagoodcommunicationlink,whichguaranteeslowlatencyandhigh reliability.Thefirststepforagoodcommunicationlinkisthedefinitionofthechannelmodel- ing.Achannelmodelallowstoobtaintheprofileofthetransmittedsignalfromthereceived signal. Channelmodelsareoftenobtainedbyphysicalmeasurementsinexperimentalenviron- ments,butforpracticalreasonsandethicalissuesinthecaseofimplanteddevicesthiscannot bedone.Thesimulationsareinthiscasethemeansforbuildingchannelmodelssincethis allowstotakeintoaccountthelossesduetohumanbody.Incaseofbodyareanetworks,the propagationpathcanbesubjecttofadingduetoshadowingbybodyposture,reflection,dif- fractionorenergyabsorption.Thepathlossrepresentstheattenuationofthetransmittedsig- nalandinthecaseofbodyareanetworksitdependsonthedistanceandfrequency[16].For PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 8/19 In-BodyRFWirelessLink Fig6.3DGainpolarandradiationpatternplotsofthedipoleantenna.a)3Dgainpolarplot,maximumgainequalto-3.20dBi;b)3Dnormalized radiationpatternplot;c)ValuesofE (dB)andE (dB)inthreedifferentplanes.Thecoordinatesystemisshowninfigure.Maximumvalue11.35dB. φ θ doi:10.1371/journal.pone.0164987.g006 implantedwirelesscommunications,thepathlossintermsofdistancedisgivenbythefollow- ingrelation: G P PLðdÞ¼ R T ð1Þ P ðdÞ R WhereP isthetransmittedpower,P isthereceivedpower,andG isthegainofthereceiving T R R antenna.Thetransmittingantennaisconsideredpartofthechannel[3,26,31].To statistically modelthepathlossindBasafunctionofthedistance,thefollowingformula,basedonthe Friisformula[26,30,31],canbeused: d PL ðdÞ¼PL þ10(cid:3)n(cid:3)log ð2Þ dB 0 10d 0 WherePL isthepathlossindBatareferencedistanced expressedinmm,d[mm]isthe 0 0 antennaseparation,andnisthepathlossexponent,whichdependsontheenvironmentwhere PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 9/19 In-BodyRFWirelessLink Fig7.Helicalantenna.a)helicalantennadimensions.b)positionofthehelicalantennanearthehumanbody. doi:10.1371/journal.pone.0164987.g007 theRFsignalpropagates.Thepathlossexponentisequalto2infreespace.Eq2doesnottake intoaccounttheshadowingcomponentduetodifferentbodytissuesandtheantennagainin differentdirections.Shadowingisdefinedasthevariationofthelocalmeanaroundthepath loss.Inparticulartheshadowingcomponenttakesintoaccountthefactthattherearedifferent valuesofthepathlossforsamedistancebetweentransmitterandreceiver.To takeintoaccount theselosses,thepathlosscanbeexpressedas[30],[26]: d PL ðdÞ¼PL þ10(cid:3)n(cid:3)log þS ð3Þ dB 0 10d 0 whereSisarandomvariablewithnormaldistributionandstandarddeviationσ.Indeedhas s beensohwnthatthevariationofthepathlossaroundtheaveragefollowalog-normaldistribu- tioninmanymeasurements[19].S~N(0,σ 2)representstheshadowingcomponentwhich S takeintoaccountthepresenceofthehumantissuesandtheantennagainindiffererent directions. SpecificAbsorptionRate(SAR) ThespecificabsorptionrateistheratethatquantifiestheRFenergyabsorbedinbiologicaltis- sue.ItisexpressedinWatt perkilogram(W/kg)anditisthemeasureoftheamountofheat generatedintheantennasurrounding.Sincethisparameterisofextremeimportanceforthe healthoftheimplantscarrier,therearelimitsandregulationsthatneedtobefulfilled.In Europeandseveralcountriesintheworld,suchasJapanandKorea,theguidelinesareprovided byICNIRP(InternationalCommissiononNon-IonizingRadiationProtection)[32]which PLOSONE|DOI:10.1371/journal.pone.0164987 October20,2016 10/19

Description:
ing on the subject (adult or child) and on the deepness in the body, i.e., . propagation path can be subject to fading due to shadowing by body .. ing the orientation), especially for the external antenna, and the modulation scheme.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.