ebook img

Fields and Galois Theory: Fall 2004 PDF

41 Pages·2012·0.364 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fields and Galois Theory: Fall 2004

Fields and Galois Theory Fall 2004 Professor Yu-Ru Liu CHRIS ALMOST Contents 1 Introduction 3 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 BriefReviewofRingTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Fieldextensions 4 2.1 DegreeofaFieldExtention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 AlgebraicandTranscendentalNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 SimpleExtensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.4 AlgebraicExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 SplittingFields 7 3.1 Existenceofsplittingfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.2 Uniquenessofthesplittingfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 SeparablePolynomials 9 4.1 PrimeFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 FormalDerivativeandRepeatedRoots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 SeparablePolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.4 PerfectFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 AutomorphismGroups 12 5.1 AutomorphismGroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.2 AutomorphismGroupsofPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5.3 FixedFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6 GaloisExtensions 13 6.1 SeparableExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 6.2 Normalextensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.3 Conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.4 GaloisExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 6.5 Artin’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1 2 CONTENTS 7 TheGaloisCorrespondence 19 7.1 TheFundementalTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.3 BriefReviewofGroupTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.4 ThePrimitiveElementTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8 RulerandCompassConstructions 24 8.1 ConstructiblePoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.2 ConstructibleNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 9 CyclotomicExtensions 27 9.1 CyclotomicPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9.2 CyclotomicFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.3 AbelianExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.4 Constructiblen-gons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 10 GaloisGroupsofPolynomials 30 10.1 Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 10.2 CubicPolynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 10.3 QuarticPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 11 SolvabilitybyRadicals 33 11.1 Cardano’sFormula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 11.2 Solvablegroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 11.3 CyclicExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 11.4 RadicalExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 11.5 SolvingpolynomialsbyRadicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 11.6 ProbabilisticGaloisTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 INTRODUCTION 3 1 Introduction GaloisTheoryistheinterplaybetweenfieldsandgroups. 1.1 Motivation Considerthefollowinghistoricalproblems. • Constructanarbitraryregularn-gonusingonlyarulerandacompass. Weknowhowtoconstructatriangle andsquare,butwhatabout5-gon,etc.? • Squarethecircleusingonlyarulerandcompass(i.e. constructasquareofareaπ). • Solve an arbirary polynomial using only algebraic means (i.e. plus, minus, times, divides, and nthroot). Thequadraticformulagivesasolutionforquadraticequations. Cubicandquarticequationscanbesolved similarily. e.g. if x3+px =qthen (cid:200) (cid:200) (cid:114) (cid:114) q p3 q2 q p3 q2 x = 3 + + + 3 − + 2 27 4 2 27 4 • Forwhichquinticequationsdowehaveradicalsolutions? Ifweknowthereissuchasolution,whatdoes thesolutionlooklike? Howcanwesolvetheseproblems? Themainstepsinapplyingthetheorythatwedevelopeinthiscourseare asfollows: (cid:112) 1. Associatethesolutionofinterest,sayα= πorα=therootofsomequintic,withthefield(cid:81)(α). 2. Associate (cid:81)(α) with the group of isomorphisms of (cid:81)(α) that fix (cid:81), Aut(cid:81)((cid:81)(α)). If α is algebraic then Aut(cid:81)((cid:81)(α))isfinite. IfαisconstructablethentheorderofAut(cid:81)((cid:81)(α))isincertainforms. HardQuestion: Howmanyintermediatefieldsbetween(cid:81)and(cid:81)(α)? Thereisa1-1correspondencebetweenthe intermediatefieldsandthesubgroupsofAut(cid:81)((cid:81)(α))(thisistheFundementalTheoremofGaloistheory.) 1.2 Brief Review of Ring Theory Forthiscoursewewillbedealingwithcommutativeringswithidentity. 1.1Example. Let R be a ring. We denote by R[x] the polynomial ring over R in indeterminant x. The degree of a polynomial is the exponent on the leading term. By convention, deg0=−∞. If a polynomial has leading coefficient1thenitiscalled“monic”. AringRiscalledadomainifithasnozerodivisors. Anelementu∈Riscalledaunitifitisinvertible. Afield isacommutativeringinwhicheachnon-zeroelementisaunitand0(cid:54)=1. 1.2Example. IfF isafield,thenF[x]isadomain(itissufficientthatF beadomain)andfor f,g∈F[x], deg(fg)= deg(f)+deg(g). Thisdegreefunctionactuallymakes F[x]intoaEuclideandomain. Therational(function)fieldoverafield F isdenoted F(x)andconsistsofallquotientsofpolynomials(with non-zerodenominator)from F[x]. Itisthesmallestfieldthatcontains F[x]. Anideal I ofaringRisa(notnecessarilyunital)subringofRthatisabsorbingwithrespecttomultiplication byelementsofR. WecannowconstructR/I,thequotientringmodulo I. I issaidtobemaximalif I (cid:54)=Randforanyideal J wehave I ⊆J ⊆R⇒I =J∨J =R. I issaidtobeprime if I (cid:54)=Rand ab∈ I ⇒a∈ I∨b∈ I. Noticethateverymaximalidealisprime, andinPIDseveryprimeidealis maximal. Fieldshaveonlytrivialideals. 4 FIELDS ANDGALOIS 1.3Theorem. Let I beaproperidealofR. Then 1. R/I isafieldifandonlyif I ismaximal 2. R/I isadomainifandonlyif I isprime 1.4Theorem. (FirstIsomorphismTheorem)Ifϕ:R→S isaringhomomorphismandkerϕ=I thenthereisan isomorphism α:R/I →Imϕ:r+I (cid:55)→ϕ(r) 2 Field extensions 2.1Definition. If E is a field containing another field F then E is said to be a field extension of F, denoted by E/F 2.1 Degree of a Field Extention If E/F isafieldextensionthenwecanview E asavectorspaceover F. • Additionisgiventoagreewiththefieldaddition • Scalarmultiplicationisgiventoagreewiththefieldmultiplication 2.2Definition. The dimension of E viewed as a vector space over F is called the degree of E over F and is denoted[E:F]. Ifthisquantityhappenstobefinite,then E/F issaidtobeafiniteextension,otherwiseitisan infiniteextension. ∼ 2.3Example. 1. (cid:67)=(cid:82)⊕i(cid:82),so[(cid:67):(cid:82)]=2 2. [(cid:82):(cid:81)]=∞ 3. LetF beafield. Therationalfieldisaninfiniteextension. Aninfinitelinearlyindependentsetis{...,x−1,1,x,x2,...} 2.4Theorem. If E/K andK/F arefinitefieldextensions,then E/F isfiniteand [E:F]=[E:K][K :F] PROOF: Let {a1,...,am} be a basis for E over K and {b1,...,bn} be a basis for K over F. It suffices to prove α:={a b |1≤i≤m, 1≤ j≤n}isabasisfor E over F. Everyelementof E isalinearcombinationofelements i j of α since each element of E is a linear combination of elements of {a ,...,a }, and each of the a’s (being 1 m i elements of K) can be written as a linear combination of elements from {b ,...,b }. α is linearly independent 1 n over F, for otherwise if (cid:80)m (cid:80)n c b a = 0, then {a ,...,a } a basis implies that (cid:80)n c b = 0 for all i. i=1 j=1 i,j j i 1 m j=1 i,j j Since{b ,...,b }isalsoabasis,wegetthatc =0foralli and j. (cid:131) 1 n i,j 2.5Definition. Let E/F be a field extension. If K is a subfield of E that contains F then we say that K is an intermediatefieldof E/F. 2.6Corollary. If E/F isafiniteextensionandK isanintermediatefieldthen[E:K]and[K :F]aredivisorsof [E:F]. FIELD EXTENSIONS 5 2.2 Algebraic and Transcendental Numbers 2.7Definition. Let E/F beafieldextensionandα∈E. Wesaythatαisalgebraicover F ifthereis f(x)∈F[x] suchthat f (cid:54)=0and f(α)=0. Otherwiseαissaidtobetranscendentalover F. Inparticular,forα∈(cid:67)andαalgebraic(transcendental)over(cid:81)(cid:112),we(cid:112)saythatαisanalgebraic(transcendental) number. For example, all rational numbers are algebraic, as are 2, 3 2+i, etc. The real numbers e (Hermite 1873)andπ(Lindemann1882)aretranscendentalnumbers. 2.8Theorem. (Liouville 1884) Let α ∈ (cid:82)\(cid:81) be a root of a polynomial f(x) ∈ (cid:81)[x] of degree n. Then there existsaconstantc>0suchthatforanyrationalnumber p withq>0 q (cid:12) (cid:12) (cid:12)α− p(cid:12)> c (cid:12) (cid:12) (cid:12) q(cid:12) qn PROOF: Withoutlossofgenerality, wecanassume|α− p|<1andthat f(x)∈(cid:90)[x]and f isirreducible. Then q f(α)=0and f(p)(cid:54)=0. BytheMeanValuetheorem,|f(p)|=|f(α)− f(p)|≤M|α− p|,where M =sup|f(cid:48)(x)| q q q q for|x−α|<1. Sinceαisirrational,deg(f)≥2andM (cid:54)=0. Furthermore,|f(p)|≥1/qn,andthus|α−p|≥ 1 1, q q M qn sotakec= 1. (cid:131) M Remark. Liouville’sTheoremsaysthatalgebraicnumbersare“harder”toapproximatebyrationalnumbersthan transcendentalnumbers. Thue(1909)andSiegel(1921)improvedtheabovetheorembyreplacingnwith n+1 (cid:112) 2 and 2 n, respectively. In 1955, Roth improved the above theorem to |α− p| > c(cid:48) . This won him the Fields q q2+ε medalin1958. 2.9Example. z=(cid:80) 1 istrancendental. n≥1 10n! Supposethatz isalgebraicandisarootofapolynomialofdegreen. Thenthereisaconstantc>0suchthat foranyrationalnumber p withq>0 q (cid:12) (cid:12) (cid:12)(cid:12)z− p(cid:12)(cid:12)> c (cid:12) q(cid:12) qn Consider(cid:80)s 1 = p , q=10s! Wehave n=1 10n! 10s! (cid:12) (cid:12) ∞ c <(cid:12)(cid:12)z− p(cid:12)(cid:12)= (cid:88) 1 < 1 qn (cid:12) q(cid:12) 10n! 10(s+1)!−1 n=s+1 Itfollowsthat 10n·s! 0<c< −→0 10(s+1)!−1 ass→∞. Thisimpliesthatc=0,acontradiction. 2.3 Simple Extensions Let E/F beafieldextensionandα∈E. Let F[α]denotethesmallestsubringof E containing F andαand F(α) denotethesmallestsufieldof E containing F andα. 2.10Definition. If E=F(α)thenwesaythat E isasimpleextensionof F. [E:F]canbeeither∞orfinitedependingonwhetherαistranscendentaloralgebraicover F. 6 FIELDS ANDGALOIS 2.11Definition. IfRandR(cid:48) aretworingscontainingafield F,thenaringhomomorphismψ:R→R(cid:48) suchthat ψ(c)=c ∀c∈F issaidtobean F-homomorphism. ∼ 2.12Theorem. Let E/F be a field extension and α ∈ E. If α is transcendental over F then F[α] = F[x] and ∼ ∼ F(α)=F(x). Inparticular, F[α](cid:54)=F(α). PROOF: The F-homomorphismα(cid:55)→x isclearlythedesiredisomorphismineachcase. (cid:131) 2.13Theorem. Let E/F be a field extension and α ∈ E. If α is algebraic over F then there is a unique monic irreduciblepolynomial p(x)∈F[x]suchthatthereisan F-isomorphism ψ:F[x]/〈p(x)〉→F[α] withψ(x)=α. Fromthisweconcludethat F[α]=F(α). PROOF: Let ψ : F[x] → F(α) be the unique F-homomorphism with ψ(x) = α. Thus, Imψ = F[α] and let ∼ I =kerψ. Since α is algebraic, I (cid:54)=0. We have F[x]/I =Imψ, a subring of a field, so it is a (principal ideal) domain. Therefore I is a prime ideal, so it must be generated by some irreducible polynomial p(x). We may ∼ assumethat p(x)ismonicwithoutlossofgenerality. Itfollowsthat F[x]/〈p(x)〉=F[α]isafield. F(α)isalsoa field,andsinceitisthesmallestfieldthatcontains F[α],wemusthave F[α]=F(α). (cid:131) 2.14Definition. Themonicirreducibleinthelasttheoremiscalledtheminimalpolynomialofαover F. 2.15Theorem. Let E/F beafieldextensionandα∈E. 1. αistranscendentalover F ifandonlyif[F(α):F]=∞ 2. αisalgebraicover F ifandonlyif[F(α):F]<∞ If p(x)istheminimalpolynomialofαover F thenwehave[F(α):F]=degp and{1,α,...,αdegp−1}isabasis of F(α)/F. 2.16Example. Letpbeaprimeandζ betheprimitivepthrootofunity. Itisarootofthecyclotomicpolynomial p Φ (x). Fromtheassignment,thispolynomialisirreducibleover(cid:81)anditismonic,soitistheminimalpolynomial p ofζ . Thus[(cid:81)(ζ ):(cid:81)]=p−1. (cid:81)(ζ )iscalledthe pth cyclotomicextensionof(cid:81). p p p 2.4 Algebraic Extensions 2.17Theorem. Let E/F beafieldextension. If[E:F]<∞thereexists{α ,...,α }⊆E suchthat F (cid:36)F(α )(cid:36) 1 n 1 F(α ,α )(cid:36)···F(α ...,α )=E 1 2 1 n PROOF: Byinductionon[E:F]. If[E:F]=1, E=F andwearedone. Supposethat[E:F]>1. Thenthereis α ∈E\F suchthat[E :F]=[E :F(α )][F(α ):F]. Since[F(α ):F]>1,wegetthat[E :F(α )]<[E :F]. 1 1 1 1 1 Applyingtheinductionhypothesisto[E:F(α )],thereis{α ,...,α }⊆EsuchthatF(α )=F (cid:36)F (α )(cid:36)···(cid:36) 1 2 n 1 1 1 2 F (α ...,α )=E. Itfollowsthat E=F(α )(α ...,α )=F(α ...,α ). (cid:131) 1 2 n 1 2 n 1 n 2.18Definition. Afieldextension E/F isalgebraicifeveryα∈E isalgebraicover F. Otherwisetheextensionis transcendental. 2.19Theorem. Let E/F beafieldextension. If[E:F]<∞then E/F isalgebraic. SPLITTINGFIELDS 7 PROOF: Suppose that [E : F] = n. For α ∈ E the elements {1,α,...,αn} are not linearly independent over F. Thusthereexistc ∈F,notallzero,suchthat i n (cid:88) cαi =0 i i=0 Henceαisarootofthepolynomial(cid:80)n c xi ∈F[x]. (cid:131) i=0 i 2.20Theorem. Let E/F beafieldextension. Definethesetofalgebraicelementstobe L:={α∈E|[F(α):F]<∞} Then L isanintermediatefield. PROOF: If a,b ∈ L, then [F(a): F]<∞ and [F(b): F]<∞. Consider the field F(a,b). By assignment 1, we have[F(a,b):F(a)]≤[F(b):F]. Itfollowsthat [F(a,b):F]=[F(a,b):F(a)][F(a):F]≤[F(b):F][F(a):F]<∞ Thus F(a,b)/F isalgebraic,soa±b,ab,anda/b(b(cid:54)=0)areallin L,so L isafield. (cid:131) 2.21Definition. Let E/F beafieldextension. Theset F ={α∈E|[F(α):F]<∞} iscalledthealgebraicclosureof F in E. 2.22Example. Let(cid:81)bethealgebraicclosureof(cid:81)over(cid:67). Then[(cid:81):(cid:81)]=∞(Seeassignment2). Inparticular, theconverseofTheorem2.19isfalse. 2.23Definition. Afield F issaidtobealgebraicallyclosedifforanyalgebraicextension E/F,then E=F. Bonus Question: Let F be a field with characteristic p, and assume that F ⊆ E, where E is algebraically closed. Istheresuchafield E/F suchthat[E:F]<∞? 3 Splitting Fields 3.1Definition. Forafield F,weconsiderthepolynomialring F[x]. For f(x)∈F[x]andafieldextension E/F, we say that f(x)splits over E if it is a product oflinear factors in E[x]. In other words, E contains all roots of f(x). Iffurthermorethereisnopropersubfieldof E that f(x)splitsover, thenwesaythat E isasplittingfield of f(x)in E. 3.1 Existence of splitting fields 3.2Theorem. Let p(x)∈F[x]beirreducible. Thequotientring F[x]/〈p(x)〉isafieldcontaining F andaroot of p(x). PROOF: Since p(x) is irreducible, the ideal I = 〈p(x)〉 is maximal. Hence E := F[x]/I is a field. Consider the map ψ:F →E:a(cid:55)→a+I Thismapisinjectivesincekerψisanidealofthefield F (andhencetrivial). Byidentifying F withψ(F), F isa subfieldof E. Moreover,letα=x+I ∈E. 8 FIELDS ANDGALOIS Claim. αisarootof p(x) Writep(x)=a +a x+···+a xn∈F[x],sop(x)=(a +I)+(a +I)x+···+(a +I)xn∈E[x]. Thuswehave 0 1 n 0 1 n p(α)=(a +I)+(a +I)(x+I)+···+(a +I)(x+I)n=p(x)+I =0 0 1 n in E. Thusα=x+I ∈E isarootof p(x). (cid:131) 3.3Theorem. (Kronecker)Let f(x)∈F[x]. Thereexistsafield E/F suchthat f(x)splitsover E PROOF: By induction on degf. If degf = 1, then E = F. If degf > 1 then write f(x) = p(x)g(x) where p(x) is irreducible. By the previous theorem there is a field K/F containing a root α of p(x). Hence f(x) = (x−α)h(x)g(x)∈K[x], for some h(x)∈K[x]. Since deg(hg)<degf, by induction there is a field E/K over which ghisaproductoflinearfactors. Itfollowsthat f(x)splitsover E/F. (cid:131) 3.4Theorem. Every f(x)∈F[x]hasasplittingfieldthatisafiniteextensionof F. PROOF: For f(x)∈F[x],thereexistsafield E/F suchthat f(x)splitsover E. Say a1,...,an aretheroots. Con- siderthealgebraicextension F(a ,...,a ). Thisextensionisfinite,and f(x)splitsover F(a ,...,a ). Moreover, 1 n 1 n f(x)doesnotsplitoveranypropersubfieldof F(a ,...,a ),sinceanysuchsubfieldwillomitatleastoneofthe 1 n a’s. Therefore F(a ,...,a )isasplittingfieldof f(x)in E. (cid:131) i 1 n 3.2 Uniqueness of the splitting field 3.5Lemma. Letϕ:R→R bearinghomomorphism. ThenthereisauniqueringhomomorphismΦ:R[x]→ 1 R [y]suchthatΦ| =ϕ andΦ(x)= y. WesaythatΦextendsthemapϕ. 1 R PROOF: Trivial. (cid:131) 3.6Theorem. Letϕ:F →F beanisomorphismoffields,and f(x)∈F[x]. LetΦ:F[x]→F [x]betheunique 1 1 ringisomorphismwhichextendsϕ andmaps x to x. Let f (x)=Φ(f(x))and E/F and E /F besplittingfields 1 1 1 of f and f ,respectively. Thenthereexistsanisomorphismψ:E→E whichextendsϕ. 1 1 PROOF: By induction on [E : F]. If [E : F] = 1, f is a product of linear factors in F[x]. Thus E = F and E = F . Take ψ = ϕ and we are done. If [E : F] > 1 then let p(x) be an irreducible factor of f(x) with 1 1 degp ≥2. Write p (x)=Φ(p(x)). Let α∈ E and α ∈ E be roots of p and p , respectively. Then we have an 1 ∼ 1 1 ∼ 1 F-isomorphism F(α)=F[x]/〈p(x)〉andan F -isomorphism F (α )=F [x]/〈p (x)〉. Considertheisomorphism 1 1 1 1 1 Φ. Since p (x)=Φ(p (x))theremustexistafieldisomorphism 1 1 ∼ Φ :F[x]/〈p(x)〉→F [x]/〈p (x)〉=F (α ) 1 1 1 1 1 whichextendsϕ. Itfollowsthatthereexistsafieldisomorphismϕ :F(α)→F (α )whichextendsϕandsends 1 1 1 αtoα . 1 ϕ (cid:47)(cid:47) F(cid:127)(cid:95) ∼= F1(cid:127)(cid:95) (cid:15)(cid:15) (cid:15)(cid:15) F(α(cid:127)(cid:95)) ϕ1 (cid:47)(cid:47) F1(α(cid:127)(cid:95)1) (cid:15)(cid:15) (cid:15)(cid:15) ψ (cid:47)(cid:47) E E 1 Byinduction,since[E:F(α)]<[E:F],thereexistsψ:E→E whichextendsϕ ,andthusextendsϕ. (cid:131) 1 1 SEPARABLEPOLYNOMIALS 9 3.7Corollary. Anytwosplittingfieldsofanon-zeropolynomial f(x)∈F[x]over F are F-isomorphic. 3.8Corollary. (E.H.Moore)Anytwofinitefieldsoforder pn forsomeprime pareisomorphic. PROOF: Anyfinitefield F oforder pn isasplittingfieldof xpn−x over(cid:70)p (cid:131) 3.9Theorem. Let F be a field and f(x)∈ F[x] have degree n≥1. Let E/F be a splitting field of f(x). Then [E:F]dividesn!. PROOF: By induction on degf. If degf = 1 then [E : F] = 1 and it’s trivial. Suppose degf > 1. If f is ∼ irreducibleandα∈ E isarootof f,thenthereexistsasimpleextension F(α)/F suchthat F(α)= F[x]/〈f(x)〉 and[F(α): F]=degf =n. Write f(x)=(x−α)g(x)∈ F(α)[x]anddegg =n−1. Byinduction, [E : F(α)] isadivisorof(n−1)!. Itfollowsthat[E :F]=[E :F(α)][F(α):F]divides n!. If f(x)isnotirreducible,write f =g·h,wheredegg=manddegh=k. LetK beasplittingfieldof g over F. Byinduction,[K :F]dividesm!. Also,[E:K]dividesk!(E isasplittingfieldofhoverK). Thus[E:F]dividesm!k!,whichisafactorofn!. (cid:131) 4 Separable Polynomials 4.1 Prime Fields 4.1Definition. Theprimefieldofafield F istheintersectionofallofthesubfieldsof F. 4.2Theorem. If F isafield,thenitsprimefieldisisomorphicto(cid:81)orto(cid:70) forsomeprime p. p PROOF: Considertheringmap χ :(cid:90)→F :n(cid:55)→1+1+···+1 (cid:124) (cid:123)(cid:122) (cid:125) ntimes Let I =kerχ. Then (cid:90)/I is a domain (since it is isomorphic to the image of χ((cid:90)), a subring of F). Hence I is a primeidealof(cid:90),andsoeitheris〈0〉or〈p〉forsomeprime p. If I =〈0〉then(cid:90)⊆F. Itfollowsthatallsubfields of F containFrac(F)=(cid:81),andsotheprimefieldof F is(cid:81). If I =〈p〉thenbythefirstisomorphismtheorem, ∼ ∼ (cid:70) =(cid:90)/〈p〉=Imχ ⊆F p andsotheprimefieldof F is(cid:70) . (cid:131) p 4.3Definition. Given a field F, if the prime field is isomorphic to (cid:81) then we say that F has characteristic 0, denotedchF =0. Ontheotherhand,iftheprimefieldisisomorphicto(cid:70) thenwesaychF = p. Noticethatif p chF =pthen(a+b)p=ap+bp. 4.2 Formal Derivative and Repeated Roots 4.4Definition. If F isafield,themonomials{1,x,x2,...}forman F-basisfor F[x]. Definethelinearoperator D : F[x] → F[x] by D1 = 0 and Dxn = nxn−1. D is called the formal derivative, and is also denoted with a prime. The formal derivative has all the usual algebraic properties of the differential operator from calculus, in particular 1. D(f +g)=Df +Dg 2. D(fg)=(Df)g+f(Dg) 10 FIELDS ANDGALOIS 4.5Theorem. Let F befieldand f(x)∈F[x]. 1. IfchF =0andDf =0then f(x)=c forsomec∈F 2. IfchF =pandDf =0then f(x)=g(xp)forsome g(x)∈F[x] PROOF: Trivial. (cid:131) 4.6Definition. Let E/F be a field extension and f(x)∈ F[x]. We say that α∈ E is a repeated root of f(x) if f(x)=(x−α)2g(x)forsome g(x)∈E[x]. 4.7Lemma. If E[x],αisarepeatedrootof f(x)ifandonlyif x−αdividesboth f andDf. PROOF: If f(x)=(x−α)2g(x)thenDf(x)=2(x−α)g(x)+(x−α)2Dg(x),so x−αisacommonfactorof f andDf. Supposeconverselythat x−αdividesboth f andDf. Write f(x)=(x−α)h(x),forsomeh(x)∈E[x]. ThenDf(x)=h(x)+(x−α)Dh(x). Df(α)=0impliesthath(α)=0,andsowearedone. (cid:131) 4.8Theorem. Let f(x)∈F[x]. Then f hasnorepeatedrootsinanyextensionofF ifandonlyifgcd(f,Df)=1 in F[x] Notice that the condition of repeated roots depends on the extension of F, while the gcd condition involves only F. PROOF: Let g = gcd(f,Df). Write g = sf +tDf for some polynomials s(x),t(x) ∈ F[x] (F[x] is a Euclidean domain). Suppose f(x)hasarepeatedrootαinsomeextension E/F. Thenclearly x−αisacommonfactorof f andDf,andso g (cid:54)=1. Supposenowthat g (cid:54)=1. Thenthereisanextension E/F suchthat E containsarootα of g. Then x−αdividesboth f andDf,andsoαisarepeatedrootof f. (cid:131) 4.3 Separable Polynomials 4.9Definition. Let F beafieldand f(x)∈ F[x]notzero. If f(x)isirreducible,thenwesay f(x)isseparable over F ifithasnorepeatedrootsin anyextensionof F. If f(x)isnotirreducible, thenwesayitisseparableif allofit’sirreduciblefactorsareseparable. 4.10Example. Considerthepolynomial f(x)= xt−a∈F[x],with t ≥2. Ifa=0,then f isclearlyseparable, astheonlyirreduciblefactorof f is x. Alinearpolynomialisalwaysseparable. Nowweassumethata(cid:54)=0. Note thatDf(x)=txt−1. 1. IfchF =0thengcd(f,Df)=1,so f isseparable. 2. IfchF =pandgcd(p,t)=1thengcd(f,Df)=1,so f isseparable. 3. IfchF =pand t=pthenDf =0,sogcd(f,Df)(cid:54)=1. However,itisstillpossiblethatalloftheirreducible factors p(x) have the property that gcd(p,Dp)=1. To decide, we need to find the irreducible factors of f. Define Fp ={ap |a∈ F}, a subfield of F. If a∈ Fp then there is some b∈ F such that a= bp, and so f(x) = (x−b)p, and f is separable. There is another case, although it only comes up if F is an infinite field of characteristic p. If a (cid:54)∈ Fp then we claim that f(x)= xp−a is irreducible. Assume that we may write xp−a=g(x)h(x),where g,h∈F[x]aremonic. Let E/F beaextensionsuchthat xp−ahasaroot β ∈E. Thenβp=a,andsoβ (cid:54)∈F. Wehave xp−a=xp−βp=(x−β)p Thus g(x) = (x −β)r and h(x) = (x −β)s for some r+s = p. Write g(x) = xr +rβxr−1+···. Then since rβ ∈ F, r =0in F. Thus r =kp forsome k. Thisshowsthateither r =0ors=0,andso xp−a is irreducibleover F. Therefore xp−aisnotseparableinthiscase. Wesaythat f ispurelyinseparablesince alloftherootsof f arethesame.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.