Table Of ContentLecture Notes in Applied
and Computational Mechanics
Volume 63
Series Editors
Prof. Dr.-Ing. Friedrich Pfeiffer
Prof. Dr.-Ing. Peter Wriggers
Lecture Notes in Applied and Computational Mechanics
Edited by F. Pfeiffer and P. Wriggers
Further volumes of this series found on our homepage: springer.com
Vol. 63 Langer, U.,Schanz, M., Steinbach, O., Vol. 48: Su, Z.; Ye, L.
Wendland, W. L. (Eds.) Identification of Damage Using Lamb Waves
Fast Boundary Element Methods in Engineering and 346 p. 2009 [978-1-84882-783-7]
Industrial Applications
272 p. 2012 [978-3-642-25669-1] Vol. 47: Studer, C.
Numerics of Unilateral Contacts and Friction
Vol. 61 Frémond, M., Maceri, F. (Ed.) 191 p. 2009 [978-3-642-01099-6]
Mechanics, Models and Methods in Civil Engineering
498 p. 2012 [978-3-642-24637-1]
Vol. 46: Ganghoffer, J.-F., Pastrone, F. (Eds.)
Mechanics of Microstructured Solids
Vol. 59 Markert, B., (Ed.) 136 p. 2009 [978-3-642-00910-5]
Advances in Extended and Multifield Theories
for Continua
Vol. 45: Shevchuk, I.V.
219 p. 2011 [978-3-642-22737-0]
Convective Heat and Mass Transfer in Rotating Disk
Systems
Vol. 58 Zavarise, G., Wriggers, P. (Eds.)
300 p. 2009 [978-3-642-00717-0]
Trends in Computational Contact Mechanics
354 p. 2011 [978-3-642-22166-8]
Vol. 44: Ibrahim R.A., Babitsky, V.I., Okuma, M. (Eds.)
Vibro-Impact Dynamics of Ocean Systems and Related
Vol. 57 Stephan, E.,
Problems
Wriggers, P.
280 p. 2009 [978-3-642-00628-9]
Modelling, Simulation and Software Concepts for
Scientific-Technological Problems
251 p. 2011 [978-3-642-20489-0] Vol.43: Ibrahim, R.A.
Vibro-Impact Dynamics
312 p. 2009 [978-3-642-00274-8]
Vol. 54: Sanchez-Palencia, E.,
Millet, O., Béchet, F.
Singular Problems in Shell Theory Vol. 42: Hashiguchi, K.
265 p. 2010 [978-3-642-13814-0] Elastoplasticity Theory
432 p. 2009 [978-3-642-00272-4]
Vol. 53: Litewka, P.
Finite Element Analysis of Beam-to-Beam Contact Vol. 41: Browand, F., Ross, J., McCallen, R. (Eds.)
159 p. 2010 [978-3-642-12939-1] Aerodynamics of Heavy Vehicles II: Trucks, Buses,
and Trains
Vol. 52: Pilipchuk, V. N. 486 p. 2009 [978-3-540-85069-4]
Nonlinear Dynamics:Between Linear and Impact Limits
364 p. 2010 [978-3-642-12798-4] Vol. 40: Pfeiffer, F.
Mechanical System Dynamics
578 p. 2008 [978-3-540-79435-6]
Vol. 51: Besdo, D., Heimann, B., Klüppel, M.,
Kröger, M., Wriggers, P., Nackenhorst, U.
Elastomere Friction Vol. 39: Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N.
249 p. 2010 [978-3-642-10656-9] Masonry Constructions: Mechanical
Models and Numerical Applications
176 p. 2008 [978-3-540-79110-2]
Vol. 50: Ganghoffer, J.-F., Pastrone, F. (Eds.)
Mechanics of Microstructured Solids 2 Vol. 38: Marynowski, K.
102 p. 2010 [978-3-642-05170-8] Dynamics of the Axially Moving Orthotropic Web
140 p. 2008 [978-3-540-78988-8]
Vol. 49: Hazra, S.B.
Large-Scale PDE-Constrained Optimization Vol. 37: Chaudhary, H., Saha, S.K.
in Applications Dynamics and Balancing of Multibody Systems
224 p. 2010 [978-3-642-01501-4] 200 p. 2008 [978-3-540-78178-3]
Fast Boundary Element
Methods in Engineering and
Industrial Applications
Ulrich Langer, Martin Schanz,
Olaf Steinbach, and Wolfgang L. Wendland (Eds.)
123
Editors
Prof. Dr. Ulrich Langer Prof. Dr. Olaf Steinbach
Institut für Numerische Mathematik Institut für Numerische Mathematik
Johannes Kepler Universität Linz Technische Universität Graz
4040 Linz, Austria 8010 Graz, Austria
Prof. Dr. -Ing. Martin Schanz Prof. Dr. -Ing. Dr. h. c. Wolfgang L. Wendland
Institut für Baumechanik Institut für Angewandte Analysis und
Technische Universität Graz Numerische Simulation
8010 Graz, Austria Universität Stuttgart
70569 Stuttgart, Germany
ISSN: 1613-7736 e-ISSN: 1860-0816
ISBN: 978-3-642-25669-1 e-ISBN: 978-3-642-25670-7
DOI 10.1007/ 978-3-642-25670-7
Springer Heidelberg New York Dordrecht London
Library of Congress Control Number: 2011944752
© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of
being entered and executed on a computer system, for exclusive use by the purchaser of the work.
Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher's location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance
Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Preface
This volume on mathematical aspects and applications of fast boundary element
methodsinengineeringandindustrycontainseightcontributionsonthestateofthe
art in this field. This book is strongly related to the annual So¨llerhaus workshops
onFastBoundaryElementMethodsinIndustrialApplications1whererecenttrends
and new methodologiesare discussed to solve todays challengingproblemsin al-
mostallareasofapplications.ThestimulatingatmosphereoftheSo¨llerhauswork-
shopscontributedalottonewdevelopmentsandnewinterdisciplinarycooperations
whicharealsodocumentedwithinthisbook.Thisspiritofstrongcooperationsbe-
tween mathematicians and engineers, with direct applicationsin industry, follows
an already long–ongoinghistory. To underline this, we just mention the volumes
BoundaryElementTopics(Springer1997),BoundaryElementAnalysis.Mathemat-
icalAspectsandApplications(Springer2007),andthespecialissueofComputing
andVisualizationinScience(Volume8,2005),whichindicatethedevelopmentof
themathematicalfoundationsofboundaryintegralequationmethodsandtheappli-
cationsoffastboundaryelementmethods.
Nowadays,fastboundaryelementmethodsareapowerfultoolforthesimulation
of physical phenomena in different fields of applications. In particular, boundary
integral equation techniques are well suited for the solution of partial differential
equations in unbounded exterior domains, or for problems which are considered
in complicated geometries, but with simple physical model assumptions. The lat-
teralsoinvolvesapplicationswithnonlinearinterfaceortransmissionconditions,as
theyappearinmultiphysicssimulations.Severaloftheseaspectsarecoveredwithin
thisbook.Anefficientandaccuratenumericalsimulationoftime–dependentprob-
lemsbothintimeandfrequencydomainbelongsstilltothemostchallengingprob-
lems. This book includes contributionson the mathematical analysis of boundary
integralformulations,thenumericalanalysisofboundaryelementmethodsandthe
construction of robust and efficient preconditioningstrategies, and the design and
implementationoffastboundaryelementmethodstosolvechallengingproblemsof
interest.
1seehttp://www.numerik.math.tu-graz.ac.at/tagungen
VI Preface
Theaimofthisbookistopresentsomeofthecurrentdevelopmentsoffastbound-
aryelementmethodsandtheirapplications.Weareawarethatsuchabookcannot
coverallaspectsintheanalysisandapplicationsoffastboundaryelementmethods.
Therearenocontributions,e.g.,foradaptivefastboundaryelementmethods.Other
missing topics include the use of fast boundary element methods for the simula-
tion of complexmultiphysicsproblemsincludingthe couplingwith finite element
methods, as well as related inverse and shape optimization problems. In fact, this
bookmay serve to presentsome of the basic tools to handlethe abovementioned
problems. The ongoing work on the solution of these problems will be reported
onfutureworkshopsandconferences,andtheresultswillbedocumentedinfuture
publicationsaswell.
We wouldliketothankallauthorsfortheircontributionstothisvolume.More-
over,wealsothankallanonymmousrefereesfortheirwork,theircriticism,andtheir
suggestions.Thesehintswereveryhelpfultoimprovethecontributions.Finally,we
wouldliketothankDr.T.DitzingerofSpringerHeidelbergforthecontinuingsup-
portandpatiencewhilepreparingthisvolume.
Graz,Linz,Stuttgart UlrichLanger
September2011 MartinSchanz
OlafSteinbach
WolfgangL.Wendland
Contents
Differential Forms and Boundary Integral Equations for
Maxwell-TypeProblems .............................................. 1
StefanKurz,BernhardAuchmann
1 Introduction............................................. 1
2 DifferentialForms–Preliminaries .......................... 3
2.1 BasicDefinitions................................. 3
2.2 IntegralTransformations .......................... 11
2.3 FundamentalSolutionoftheHelmholtzEquation...... 14
2.4 Single-LayerandDouble-LayerPotentials............ 16
3 SobolevSpacesofDifferentialForms ....................... 18
3.1 SobolevSpacesontheDomain ..................... 18
3.2 SobolevSpacesontheBoundary.................... 21
4 RepresentationFormula................................... 26
4.1 Maxwell-TypeProblems,SolutionSpaces,andTrace
Operators ....................................... 27
4.2 AsymptoticConditions............................ 28
4.3 RepresentationFormulaforMaxwellSolutions........ 31
4.4 JumpRelationsoftheLayerPotentials............... 42
5 BoundaryIntegralOperators............................... 45
5.1 SymmetryProperties.............................. 47
5.2 EllipticityProperties.............................. 50
6 BoundaryIntegralEquations............................... 53
6.1 Caldero´nProjectorforInteriorandExteriorProblems .. 53
6.2 Equivalent Maxwell-Type Problems, Dual
Transformations.................................. 55
7 Conclusions............................................. 60
References.................................................... 61
VIII Contents
DiscreteElectromagnetismwithShapeFormsofHigherPolynomial
Degree .............................................................. 63
MarvinFleck,SergejRjasanow
1 Introduction............................................. 63
2 TheMagnetoquasistaticApproximationofMaxwell’s
Equations............................................... 66
2.1 ClassicalDerivation .............................. 66
2.2 DifferentialForms................................ 70
3 TheLowOrderVersion ................................... 77
3.1 DualComplex ................................... 77
3.2 DerivativeandTraceOperators ..................... 78
3.3 HodgeOperators ................................. 79
3.4 PairingMatrices ................................. 80
3.5 DiscreteEquation ................................ 80
4 LocalizationofDegreesofFreedom......................... 81
4.1 SmallSimplices.................................. 81
4.2 Higher-DimensionalSimplices ..................... 84
5 HigherOrderDEM....................................... 84
6 NonlinearMaterials ...................................... 88
7 NumericalResults........................................ 89
8 Conclusions............................................. 91
References.................................................... 91
Additive Schwarz Methods for the hp Version of the Boundary
ElementMethodinR3 ................................................ 93
FlorianLeydecker,ErnstP.Stephan
1 Introduction............................................. 93
2 AdditiveSchwarzMethod–GeneralSetting.................. 96
3 AdditiveSchwarzMethodforthehp-VersionBEMforthe
HypersingularIntegralEquationonRectangularMeshes ....... 96
4 AdditiveSchwarzMethodforthe p-VersionBEMforthe
HypersingularIntegralEquationonTriangles................. 100
5 AdditiveSchwarzMethodforthehp-VersionBEMforthe
WeaklyIntegralEquation.................................. 106
References.................................................... 108
Fast Boundary Element Methods for Industrial Applicationsin
Magnetostatics ...................................................... 111
ZoranAndjelic,Gu¨ntherOf,OlafSteinbach,PeterUrthaler
1 Introduction............................................. 111
2 BoundaryIntegralFormulationsforTransmissionProblems..... 112
2.1 ModelProblem .................................. 113
2.2 Steklov–Poincare´OperatorInterfaceEquation ........ 114
2.3 SingleLayerPotentialFormulation.................. 117
2.4 DoubleLayerPotentialFormulation................. 118
Contents IX
2.5 EquivalenceandUniqueSolvabilityoftheBoundary
IntegralEquations................................ 121
2.6 EvaluationoftheMagneticField.................... 121
3 BoundaryElementMethods ............................... 124
3.1 Steklov–Poincare´OperatorInterfaceEquation ........ 125
3.2 SingleLayerPotentialFormulation.................. 127
3.3 DirectDoubleLayerPotentialFormulation........... 128
3.4 IndirectDoubleLayerPotentialFormulation.......... 130
4 NumericalExamples ..................................... 131
4.1 Sphere.......................................... 131
4.2 Cube ........................................... 132
4.3 Ring ........................................... 133
4.4 RingwithGap ................................... 138
4.5 ControllableReactor.............................. 139
5 Conclusions............................................. 141
References.................................................... 141
WavePropagationProblemsTreatedwithConvolutionQuadrature
andBEM ............................................................ 145
LehelBanjai,MartinSchanz
1 Introduction–StateoftheArt.............................. 145
2 TimeDependentBoundaryIntegralEquations ................ 147
2.1 GoverningEquations.............................. 148
2.2 IntegralEquations................................ 152
3 ConvolutionQuadrature................................... 155
3.1 LinearMultistepBasedConvolutionQuadrature....... 156
3.2 Runge-KuttaBasedConvolutionQuadrature.......... 157
3.3 Implementation .................................. 159
4 ConvolutionQuadratureAppliedtoHyperbolicInitialValue
Problems ............................................... 163
4.1 BoundsintheLaplaceDomain ..................... 164
4.2 PropertiesofConvolutionWeights .................. 166
4.3 DissipationandDispersion......................... 168
5 SpaceDiscretization...................................... 169
5.1 GalerkinandCollocationinSpace .................. 170
5.2 FastData-SparseMethodsinFrequencyDomain ...... 171
6 NumericalExample ...................................... 172
Appendix..................................................... 177
References.................................................... 179
FastNystro¨mMethodsforParabolicBoundaryIntegralEquations .... 185
JohannesTausch
1 Introduction............................................. 185
2 HeatPotentialsasAbelIntegralOperators ................... 187
3 TimeDependentIntegralOperators ......................... 189
3.1 ProjectionMethods............................... 190