ebook img

Fast Boundary Element Methods in Engineering and Industrial Applications PDF

278 Pages·2012·2.836 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fast Boundary Element Methods in Engineering and Industrial Applications

Lecture Notes in Applied and Computational Mechanics Volume 63 Series Editors Prof. Dr.-Ing. Friedrich Pfeiffer Prof. Dr.-Ing. Peter Wriggers Lecture Notes in Applied and Computational Mechanics Edited by F. Pfeiffer and P. Wriggers Further volumes of this series found on our homepage: springer.com Vol. 63 Langer, U.,Schanz, M., Steinbach, O., Vol. 48: Su, Z.; Ye, L. Wendland, W. L. (Eds.) Identification of Damage Using Lamb Waves Fast Boundary Element Methods in Engineering and 346 p. 2009 [978-1-84882-783-7] Industrial Applications 272 p. 2012 [978-3-642-25669-1] Vol. 47: Studer, C. Numerics of Unilateral Contacts and Friction Vol. 61 Frémond, M., Maceri, F. (Ed.) 191 p. 2009 [978-3-642-01099-6] Mechanics, Models and Methods in Civil Engineering 498 p. 2012 [978-3-642-24637-1] Vol. 46: Ganghoffer, J.-F., Pastrone, F. (Eds.) Mechanics of Microstructured Solids Vol. 59 Markert, B., (Ed.) 136 p. 2009 [978-3-642-00910-5] Advances in Extended and Multifield Theories for Continua Vol. 45: Shevchuk, I.V. 219 p. 2011 [978-3-642-22737-0] Convective Heat and Mass Transfer in Rotating Disk Systems Vol. 58 Zavarise, G., Wriggers, P. (Eds.) 300 p. 2009 [978-3-642-00717-0] Trends in Computational Contact Mechanics 354 p. 2011 [978-3-642-22166-8] Vol. 44: Ibrahim R.A., Babitsky, V.I., Okuma, M. (Eds.) Vibro-Impact Dynamics of Ocean Systems and Related Vol. 57 Stephan, E., Problems Wriggers, P. 280 p. 2009 [978-3-642-00628-9] Modelling, Simulation and Software Concepts for Scientific-Technological Problems 251 p. 2011 [978-3-642-20489-0] Vol.43: Ibrahim, R.A. Vibro-Impact Dynamics 312 p. 2009 [978-3-642-00274-8] Vol. 54: Sanchez-Palencia, E., Millet, O., Béchet, F. Singular Problems in Shell Theory Vol. 42: Hashiguchi, K. 265 p. 2010 [978-3-642-13814-0] Elastoplasticity Theory 432 p. 2009 [978-3-642-00272-4] Vol. 53: Litewka, P. Finite Element Analysis of Beam-to-Beam Contact Vol. 41: Browand, F., Ross, J., McCallen, R. (Eds.) 159 p. 2010 [978-3-642-12939-1] Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains Vol. 52: Pilipchuk, V. N. 486 p. 2009 [978-3-540-85069-4] Nonlinear Dynamics:Between Linear and Impact Limits 364 p. 2010 [978-3-642-12798-4] Vol. 40: Pfeiffer, F. Mechanical System Dynamics 578 p. 2008 [978-3-540-79435-6] Vol. 51: Besdo, D., Heimann, B., Klüppel, M., Kröger, M., Wriggers, P., Nackenhorst, U. Elastomere Friction Vol. 39: Lucchesi, M., Padovani, C., Pasquinelli, G., Zani, N. 249 p. 2010 [978-3-642-10656-9] Masonry Constructions: Mechanical Models and Numerical Applications 176 p. 2008 [978-3-540-79110-2] Vol. 50: Ganghoffer, J.-F., Pastrone, F. (Eds.) Mechanics of Microstructured Solids 2 Vol. 38: Marynowski, K. 102 p. 2010 [978-3-642-05170-8] Dynamics of the Axially Moving Orthotropic Web 140 p. 2008 [978-3-540-78988-8] Vol. 49: Hazra, S.B. Large-Scale PDE-Constrained Optimization Vol. 37: Chaudhary, H., Saha, S.K. in Applications Dynamics and Balancing of Multibody Systems 224 p. 2010 [978-3-642-01501-4] 200 p. 2008 [978-3-540-78178-3] Fast Boundary Element Methods in Engineering and Industrial Applications Ulrich Langer, Martin Schanz, Olaf Steinbach, and Wolfgang L. Wendland (Eds.) 123 Editors Prof. Dr. Ulrich Langer Prof. Dr. Olaf Steinbach Institut für Numerische Mathematik Institut für Numerische Mathematik Johannes Kepler Universität Linz Technische Universität Graz 4040 Linz, Austria 8010 Graz, Austria Prof. Dr. -Ing. Martin Schanz Prof. Dr. -Ing. Dr. h. c. Wolfgang L. Wendland Institut für Baumechanik Institut für Angewandte Analysis und Technische Universität Graz Numerische Simulation 8010 Graz, Austria Universität Stuttgart 70569 Stuttgart, Germany ISSN: 1613-7736 e-ISSN: 1860-0816 ISBN: 978-3-642-25669-1 e-ISBN: 978-3-642-25670-7 DOI 10.1007/ 978-3-642-25670-7 Springer Heidelberg New York Dordrecht London Library of Congress Control Number: 2011944752 © Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface This volume on mathematical aspects and applications of fast boundary element methodsinengineeringandindustrycontainseightcontributionsonthestateofthe art in this field. This book is strongly related to the annual So¨llerhaus workshops onFastBoundaryElementMethodsinIndustrialApplications1whererecenttrends and new methodologiesare discussed to solve todays challengingproblemsin al- mostallareasofapplications.ThestimulatingatmosphereoftheSo¨llerhauswork- shopscontributedalottonewdevelopmentsandnewinterdisciplinarycooperations whicharealsodocumentedwithinthisbook.Thisspiritofstrongcooperationsbe- tween mathematicians and engineers, with direct applicationsin industry, follows an already long–ongoinghistory. To underline this, we just mention the volumes BoundaryElementTopics(Springer1997),BoundaryElementAnalysis.Mathemat- icalAspectsandApplications(Springer2007),andthespecialissueofComputing andVisualizationinScience(Volume8,2005),whichindicatethedevelopmentof themathematicalfoundationsofboundaryintegralequationmethodsandtheappli- cationsoffastboundaryelementmethods. Nowadays,fastboundaryelementmethodsareapowerfultoolforthesimulation of physical phenomena in different fields of applications. In particular, boundary integral equation techniques are well suited for the solution of partial differential equations in unbounded exterior domains, or for problems which are considered in complicated geometries, but with simple physical model assumptions. The lat- teralsoinvolvesapplicationswithnonlinearinterfaceortransmissionconditions,as theyappearinmultiphysicssimulations.Severaloftheseaspectsarecoveredwithin thisbook.Anefficientandaccuratenumericalsimulationoftime–dependentprob- lemsbothintimeandfrequencydomainbelongsstilltothemostchallengingprob- lems. This book includes contributionson the mathematical analysis of boundary integralformulations,thenumericalanalysisofboundaryelementmethodsandthe construction of robust and efficient preconditioningstrategies, and the design and implementationoffastboundaryelementmethodstosolvechallengingproblemsof interest. 1seehttp://www.numerik.math.tu-graz.ac.at/tagungen VI Preface Theaimofthisbookistopresentsomeofthecurrentdevelopmentsoffastbound- aryelementmethodsandtheirapplications.Weareawarethatsuchabookcannot coverallaspectsintheanalysisandapplicationsoffastboundaryelementmethods. Therearenocontributions,e.g.,foradaptivefastboundaryelementmethods.Other missing topics include the use of fast boundary element methods for the simula- tion of complexmultiphysicsproblemsincludingthe couplingwith finite element methods, as well as related inverse and shape optimization problems. In fact, this bookmay serve to presentsome of the basic tools to handlethe abovementioned problems. The ongoing work on the solution of these problems will be reported onfutureworkshopsandconferences,andtheresultswillbedocumentedinfuture publicationsaswell. We wouldliketothankallauthorsfortheircontributionstothisvolume.More- over,wealsothankallanonymmousrefereesfortheirwork,theircriticism,andtheir suggestions.Thesehintswereveryhelpfultoimprovethecontributions.Finally,we wouldliketothankDr.T.DitzingerofSpringerHeidelbergforthecontinuingsup- portandpatiencewhilepreparingthisvolume. Graz,Linz,Stuttgart UlrichLanger September2011 MartinSchanz OlafSteinbach WolfgangL.Wendland Contents Differential Forms and Boundary Integral Equations for Maxwell-TypeProblems .............................................. 1 StefanKurz,BernhardAuchmann 1 Introduction............................................. 1 2 DifferentialForms–Preliminaries .......................... 3 2.1 BasicDefinitions................................. 3 2.2 IntegralTransformations .......................... 11 2.3 FundamentalSolutionoftheHelmholtzEquation...... 14 2.4 Single-LayerandDouble-LayerPotentials............ 16 3 SobolevSpacesofDifferentialForms ....................... 18 3.1 SobolevSpacesontheDomain ..................... 18 3.2 SobolevSpacesontheBoundary.................... 21 4 RepresentationFormula................................... 26 4.1 Maxwell-TypeProblems,SolutionSpaces,andTrace Operators ....................................... 27 4.2 AsymptoticConditions............................ 28 4.3 RepresentationFormulaforMaxwellSolutions........ 31 4.4 JumpRelationsoftheLayerPotentials............... 42 5 BoundaryIntegralOperators............................... 45 5.1 SymmetryProperties.............................. 47 5.2 EllipticityProperties.............................. 50 6 BoundaryIntegralEquations............................... 53 6.1 Caldero´nProjectorforInteriorandExteriorProblems .. 53 6.2 Equivalent Maxwell-Type Problems, Dual Transformations.................................. 55 7 Conclusions............................................. 60 References.................................................... 61 VIII Contents DiscreteElectromagnetismwithShapeFormsofHigherPolynomial Degree .............................................................. 63 MarvinFleck,SergejRjasanow 1 Introduction............................................. 63 2 TheMagnetoquasistaticApproximationofMaxwell’s Equations............................................... 66 2.1 ClassicalDerivation .............................. 66 2.2 DifferentialForms................................ 70 3 TheLowOrderVersion ................................... 77 3.1 DualComplex ................................... 77 3.2 DerivativeandTraceOperators ..................... 78 3.3 HodgeOperators ................................. 79 3.4 PairingMatrices ................................. 80 3.5 DiscreteEquation ................................ 80 4 LocalizationofDegreesofFreedom......................... 81 4.1 SmallSimplices.................................. 81 4.2 Higher-DimensionalSimplices ..................... 84 5 HigherOrderDEM....................................... 84 6 NonlinearMaterials ...................................... 88 7 NumericalResults........................................ 89 8 Conclusions............................................. 91 References.................................................... 91 Additive Schwarz Methods for the hp Version of the Boundary ElementMethodinR3 ................................................ 93 FlorianLeydecker,ErnstP.Stephan 1 Introduction............................................. 93 2 AdditiveSchwarzMethod–GeneralSetting.................. 96 3 AdditiveSchwarzMethodforthehp-VersionBEMforthe HypersingularIntegralEquationonRectangularMeshes ....... 96 4 AdditiveSchwarzMethodforthe p-VersionBEMforthe HypersingularIntegralEquationonTriangles................. 100 5 AdditiveSchwarzMethodforthehp-VersionBEMforthe WeaklyIntegralEquation.................................. 106 References.................................................... 108 Fast Boundary Element Methods for Industrial Applicationsin Magnetostatics ...................................................... 111 ZoranAndjelic,Gu¨ntherOf,OlafSteinbach,PeterUrthaler 1 Introduction............................................. 111 2 BoundaryIntegralFormulationsforTransmissionProblems..... 112 2.1 ModelProblem .................................. 113 2.2 Steklov–Poincare´OperatorInterfaceEquation ........ 114 2.3 SingleLayerPotentialFormulation.................. 117 2.4 DoubleLayerPotentialFormulation................. 118 Contents IX 2.5 EquivalenceandUniqueSolvabilityoftheBoundary IntegralEquations................................ 121 2.6 EvaluationoftheMagneticField.................... 121 3 BoundaryElementMethods ............................... 124 3.1 Steklov–Poincare´OperatorInterfaceEquation ........ 125 3.2 SingleLayerPotentialFormulation.................. 127 3.3 DirectDoubleLayerPotentialFormulation........... 128 3.4 IndirectDoubleLayerPotentialFormulation.......... 130 4 NumericalExamples ..................................... 131 4.1 Sphere.......................................... 131 4.2 Cube ........................................... 132 4.3 Ring ........................................... 133 4.4 RingwithGap ................................... 138 4.5 ControllableReactor.............................. 139 5 Conclusions............................................. 141 References.................................................... 141 WavePropagationProblemsTreatedwithConvolutionQuadrature andBEM ............................................................ 145 LehelBanjai,MartinSchanz 1 Introduction–StateoftheArt.............................. 145 2 TimeDependentBoundaryIntegralEquations ................ 147 2.1 GoverningEquations.............................. 148 2.2 IntegralEquations................................ 152 3 ConvolutionQuadrature................................... 155 3.1 LinearMultistepBasedConvolutionQuadrature....... 156 3.2 Runge-KuttaBasedConvolutionQuadrature.......... 157 3.3 Implementation .................................. 159 4 ConvolutionQuadratureAppliedtoHyperbolicInitialValue Problems ............................................... 163 4.1 BoundsintheLaplaceDomain ..................... 164 4.2 PropertiesofConvolutionWeights .................. 166 4.3 DissipationandDispersion......................... 168 5 SpaceDiscretization...................................... 169 5.1 GalerkinandCollocationinSpace .................. 170 5.2 FastData-SparseMethodsinFrequencyDomain ...... 171 6 NumericalExample ...................................... 172 Appendix..................................................... 177 References.................................................... 179 FastNystro¨mMethodsforParabolicBoundaryIntegralEquations .... 185 JohannesTausch 1 Introduction............................................. 185 2 HeatPotentialsasAbelIntegralOperators ................... 187 3 TimeDependentIntegralOperators ......................... 189 3.1 ProjectionMethods............................... 190

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.