ebook img

Fano Resonances in Optics and Microwaves: Physics and Applications PDF

592 Pages·2018·29.995 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fano Resonances in Optics and Microwaves: Physics and Applications

Springer Series in Optical Sciences 219 Eugene Kamenetskii · Almas Sadreev  Andrey Miroshnichenko    Editors Fano Resonances in Optics and Microwaves Physics and Applications Springer Series in Optical Sciences Volume 219 Founded by H. K. V. Lotsch Editor-in-chief William T. Rhodes, Florida Atlantic University, Boca Raton, FL, USA Series editors Ali Adibi, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA Toshimitsu Asakura, Hokkai-Gakuen University, Sapporo, Hokkaido, Japan Theodor W. Hänsch, Max-Planck-Institut für Quantenoptik, Garching, Bayern, Germany Ferenc Krausz, Garching, Bayern, Germany Barry R. Masters, Cambridge, MA, USA Katsumi Midorikawa, Laser Technology Laboratory, RIKEN Advanced Science Institute, Saitama, Japan Bo A. J. Monemar, Department of Physics and Measurement Technology, Linköping University, Linköping, Sweden Herbert Venghaus, Ostseebad Binz, Germany Horst Weber, Berlin, Germany Harald Weinfurter, München, Germany Springer Series inOptical SciencesisledbyEditor-in-ChiefWilliamT. Rhodes, Georgia Institute of Technology, USA, and provides an expanding selection of research monographs in all major areas of optics: – lasers and quantum optics – ultrafast phenomena – optical spectroscopy techniques – optoelectronics – information optics – applied laser technology – industrial applications and – other topics of contemporary interest. With this broad coverage of topics the series is useful to research scientists and engineers who need up-to-date reference books. More information about this series at http://www.springer.com/series/624 Eugene Kamenetskii Almas Sadreev (cid:129) Andrey Miroshnichenko Editors Fano Resonances in Optics and Microwaves Physics and Applications 123 Editors Eugene Kamenetskii Andrey Miroshnichenko Department ofElectrical andComputer Schoolof Engineering andInformation Engineering Technology Ben-Gurion University of the Negev University of NewSouthWales Beersheba, Israel Canberra,ACT, Australia Almas Sadreev Federal ResearchCenter KSCSBRAS Kirensky Institute of Physics Krasnoyarsk, Russia ISSN 0342-4111 ISSN 1556-1534 (electronic) SpringerSeries inOptical Sciences ISBN978-3-319-99730-8 ISBN978-3-319-99731-5 (eBook) https://doi.org/10.1007/978-3-319-99731-5 LibraryofCongressControlNumber:2018953587 ©SpringerNatureSwitzerlandAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Scatteringofwavesinvolvesdifferentphenomena,butthemostcommononeisthe interference. It has different manifestations, including constructive interference, correspondingtothefieldenhancement,anddestructiveinterference,leadingtothe field suppression. One of the interesting phenomena is resonant scattering when coexistence of resonant transmission and resonant reflection can be reduced to the interferenceofdiscreteresonantstateswithacontinuumofnonresonantpropagation modes.Itresultsinanasymmetricprofileoftheresonantlineshapes.Theseareknown as Fano resonances. It turns out to be a common situation in any complex system describing wave propagation regardless of their nature, including classical and quantummechanicalsystems.Theseeffectsareintimatelyrelatedtothepresenceof quasiboundstatesresonantlyinteractingwithacontinuumofscatteringstates.Allthis makes the Fano resonancea verygeneric phenomenon.The Fanoresonances have been extensively studied in nanoparticles, plasmonic, dielectric, and magnonic structures, and metamaterials as well. With their unique physical properties and unusual combination of classical and quantum effects, Fano resonances have a huge application potential in a wide range of fields, from telecommunication to ultrasensitivebiosensing,medicalinstrumentation,anddatastorage. Thisbookenablesreaderstoacquirethemultifacetedunderstandingrequiredfor these multidisciplinary challenges. The book has 23 chapters in total covering variousaspectsoftheFanoresonancesmanifestation.Thechapterswerewrittenby international experts from 16 countries (Turkey, South Korea, India, Italy, Switzerland, Japan, China, France, Russia, Morocco, USA, Belgium, Brazil, Germany, Australia, and Israel), who have contributed to the advancement of sci- enceandengineeringoftheFanoresonanceinopticalandmicrowavesystems.The spectrumoftheproblemspresentedinthisbookisverywide.ItisshownthatFano resonances manifesting novel phenomena both in linear and nonlinear response of plasmonicnanomaterialscanextendthelifetimeofplasmonicexcitations,enabling the operation of nanolasers. A new pathway toward nonmagnetic excitation of an optical spin angular momentum based on the spin-dependent excitation of Fano resonances is introduced. A new concept based on polarization Mueller matrix analysis for tuning the Fano interference effect and the resulting asymmetric v vi Preface spectral line shape in anisotropic optical system is discussed. A comprehensive review of recent theoretical and experimental advances in the field of Fano reso- nances and bound states in the continuum for light transport in evanescently cou- pledopticalstructuresisprovidedincludingarraysofdielectricopticalwaveguides andcoupledresonatoropticalwaveguides.Thereviewofdifferentformsofcoupled oscillatormodelsforFanoresonantopticalandmicrowavesystemsisgiven.There are studies of tunable metamaterials that realize the storage and retrieval of elec- tromagnetic waves in the same way as the atomic electromagnetically- nduced transparencysystem.Thetemporalcoupled-modetheoryformalism todescribethe coupling process and the interference effect involved with optical scattering and absorption in nanostructures is shown. To unveil the origin of Fano lineshapes in the scattering efficiency of a spherical nanoparticle, the analysis of the full-wave scatteringintermsofasetofeigenmodesindependentofitspermittivityisderived. Basedonsymmetryconsiderations,withthetheoreticalandexperimentalevidence, itisshownthatelectromagneticallyinduced-transparencyanddarkmodeexcitation are not necessarily associated. The feasibility of realizing the light-tunable Fano resonance in the metal-dielectric multilayer structures is demonstrated. In the book, the reader can find a study of the core-level absorption of an impurity in a one-dimensional semiconductor superlattice with the use of the complex spectral analysis. One can see the results of investigation of the Fano resonances in high-index dielectric nanowires for directional scattering. There are chapters with studies of total wave refection in band networks due to impurities, disorder, and quasiperiodic potentials; the theory of the multiple resonance inter- ference in metallic nanohole array systems based on spatial and temporal coupled-mode methods; and the theory describing the Fano asymmetry by expanding the transmission amplitude with respect to states with point spectra, includingnotonlyboundstates,butalsoresonantstateswithcomplexeigenvalues. It is shown that the Fano resonances can be effectively engineered with the use of multilayered hyperbolic metamaterials with either metal-dielectric or graphene-based multilayers. For Fano resonance generation, a new type of struc- tures—3Dfoldingmetamaterials—isintroduced.Itisdemonstratedthattheconcept of Fano resonance can be of significant interest in the context of a new emerging topic of topological photonics. Analytically, it is shown that the Purcell factor relatedtoadipoleemitterorientedorthogonalortangentialtothesphericalsurface canexhibittheFanoorLorentzianlineshapesinthenear-field.Itisalsodiscussed that almost any resonant response, either in directional or total scattering light scattering,canbeefficientlydescribedintermsofFanoresonances.TuningofFano resonance by waveguide rotation is considered in a non-axisymmetric acoustic-wave structure. It is shown that interaction of magnetic-dipolar-mode ferrite particles with a microwave-field continuum is distinguished by broken dual (electric–magnetic) symmetry. A unified vision of strong, weak, and critical cou- pling is provided based on a simple coupled oscillator model with a nonresonant background usually employed to describe Fano resonances in nanophotonic structures. Preface vii Wehope thatthebook willbe avaluableaidtounderstand thecurrent research of the Fano resonance phenomena in optical and microwave structures for scien- tists, researchers, and graduate students working in the fields of electronic engi- neering, materials science, and condense matter physics. We are thankful to all authorswhoacceptedourinvitationtocontributetherespectivechapters.Wewould liketoexpressourgratitudetoDr.ClausAscheron,ExecutiveEditor,Springer,for hisinitialsupportofthebookproposalandcollaborationwithusduringpreparation ofthebook.WearethankfultoAdelheidDuhm,JayanthiKrishnamoorthi,andElke Sauer from the Springer Production Department for their assistance at the book production. Beersheba, Israel Eugene Kamenetskii Krasnoyarsk, Russia Almas Sadreev Canberra, Australia Andrey Miroshnichenko Contents 1 Fano Resonances in the Linear and Nonlinear Plasmonic Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mehmet Emre Taşgın, Alpan Bek and Selen Postacı 1.1 Plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Fano Resonances in Linear Response. . . . . . . . . . . . . . . . . . . 5 1.3 Fano Resonances in Nonlinear Response . . . . . . . . . . . . . . . . 10 1.3.1 Overlap Integrals and Selection Rules . . . . . . . . . . . . 12 1.3.2 Enhancement and Suppression of SHG . . . . . . . . . . . 15 1.3.3 Silent Enhancement of SERS. . . . . . . . . . . . . . . . . . . 23 1.3.4 Interference of Multiple Conversion Paths and FWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 Fano-resonant Excitations of Generalized Optical Spin Waves. . . . 33 Xianji Piao, Sunkyu Yu and Namkyoo Park 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Coupled Mode Theory for Optical Spin Waves. . . . . . . . . . . . 34 2.2.1 TCMT Analysis of 2D non-Hermitian Chirality . . . . . 36 2.2.2 TCMT Analysis of 3D Bulk Chirality with Circular Birefringent Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Fano-resonant Excitation of Optical Spin . . . . . . . . . . . . . . . . 42 2.3.1 Fano Line Shapes Toward Spectral Spin Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.2 Spin-Dependent Antisymmetric Fano Resonances. . . . 44 2.3.3 Spin Fano Parameters . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Applications and Metamaterial Realizations . . . . . . . . . . . . . . 47 2.4.1 Fano-resonant Optical Spin Switching . . . . . . . . . . . . 47 2.4.2 Fano-resonant ‘Net’ Spin Excitation for Unpolarized Light. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 ix x Contents 2.4.3 Metamaterial Realizations . . . . . . . . . . . . . . . . . . . . . 50 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Mueller Matrix Approach for Engineering Asymmetric Fano-resonance Line Shape in Anisotropic Optical System. . . . . . . 57 A. K. Singh, S. Chandel, S. K. Ray, P. Mitra and N. Ghosh 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Basics of Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Polarization Algebra . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Comprehensive Polarimetric Platform for Plasmonic Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3 Fano Resonance in Scattering . . . . . . . . . . . . . . . . . . . . . . . . 67 3.4 Plasmonic Waveguiding Photonic Crystal. . . . . . . . . . . . . . . . 69 3.4.1 Resonant Anomaly in Metal Dielectric Grating. . . . . . 70 3.4.2 Rayleigh Anomaly in Metal Dielectric Grating. . . . . . 72 3.5 Polarization Mediated Tuning of Fano-resonance . . . . . . . . . . 72 3.5.1 Plasmonic Oligomers . . . . . . . . . . . . . . . . . . . . . . . . 73 3.5.2 Polarisation Controlled Tuning of Fano Asymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Fano Resonances and Bound States in the Continuum in Evanescently-Coupled Optical Waveguides and Resonators . . . . . . 85 Stefano Longhi 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Fano Resonance and Bound States in the Continuum in Optical Waveguide Lattices with Side-Coupled Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3 Fano Resonance and Particle Statistics . . . . . . . . . . . . . . . . . . 93 4.4 Dynamical Control of Fano Resonances . . . . . . . . . . . . . . . . . 99 4.5 Fano Resonances in Non-Hermitian Photonic Structures . . . . . 102 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5 Model of Coupled Oscillators for Fano Resonances . . . . . . . . . . . . 109 Benjamin Gallinet 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2 Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.3 Coupled Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.4 Resonance Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.4.1 Derivation of Resonance Formula Without Intrinsic Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.4.2 Derivation of Formula Including Intrinsic Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.